张欣欣
,
乐恺
,
刘育松
,
王戈
,
倪文
宇航材料工艺
doi:10.3969/j.issn.1007-2330.2010.02.005
应用分子运动论对二氧化硅气凝胶的传热机理进行了研究.根据其微观结构特点,建立了纳米孔隙模型.考虑气体分子间的相互作用力,推导了纳米孔隙内气体的热导率,得到了二氧化硅气凝胶内气体热导率的表达式.建立了二氧化硅气凝胶固相结构单元导热模型,运用分子运动论推导了固相结构的热导率,获得了二氧化硅气凝胶的总体等效热导率.结果表明,影响二氧化硅气凝胶内气体热导率的主要因素是气体的平均分子自由程与分子之间以及分子与壁面之间的相互作用,固相结构单元的直径和接触界面的直径是影响固相结构单元热导率的主要因素,而二氧化硅气凝胶孔隙尺寸的分布严重影响其等效热导率.
关键词:
绝热材料
,
二氧化硅气凝胶
,
分子运动论
,
热导率
蔡雪梅
,
周应华
,
吴贵能
液晶与显示
doi:10.3969/j.issn.1007-2780.2009.02.004
采用锆钛酸铅(PZT)铁电阴极,在高真空4×10-3 Pa和低真空1.4 Pa条件下分别进行了电子发射实验.对收集电流波形进行积分,计算出收集电荷,低真空与高真空的电荷比值为0.193 3,说明低真空条件下发射出的电子损失较大.运用分子运动理论和等离子体放电理论对发射电子损失的原因进行了分析.通过分子运动理论计算了分子碰撞对到达收集极的电子数目的影响,得到的低真空与高真空的电子到达几率分别为89.58%和99.97%,二者的比值为0.896 1.该数值与通过实验收集电流波形计算出的到达电子比值相差很大.考虑低真空下等离子体的作用,发射电子除了与气体分子碰撞有部分损失外,还有通过等离子体和栅电极形成的对地放电损失.由等离子体放电理论计算出等离子体覆盖栅电极时间为23.8 ns,与低真空的收集电流振荡周期20 ns非常接近,是低真空下等离子体放电损失的有力证明.
关键词:
铁电阴极
,
分子运动论
,
等离子体放电