王德峥
催化学报
doi:10.1016/S1872-2067(10)60103-9
使用Langmuir-Hinshelwood(L-H)动力学的学者大部分未注意到该动力学包含了所有吸附物种采用拟稳态假设的隐含条件,因而他们通常忽视了确认实验条件是否允许采用拟稳态假设.然而,对于大部分气固催化反应,拟稳态假设的成立需基于催化活性位浓度很小的前提.对于催化活性位浓度高的反应体系,其覆盖度较高的吸附物种不满足拟稳态假设.因此,在这种情况下通过实验测定的动力学常数没有物理意义,而仅为该实验条件下的数学回归参数.本文将活性位浓度小于最高反应气浓度的十分之一视为拟稳态假设成立的充分条件,通过估算发现许多催化剂并不满足该条件.
关键词:
朗格缪尔吸附等温线
,
Langmuir-Hinshelwood动力学
,
吸附物种
,
拟稳态假设
,
速控步骤
,
微观动力学
毛羽
,
陈建富
,
王海丰
,
胡培君
催化学报
doi:10.1016/S1872-2067(15)60875-0
多相催化对于现代社会来说具有极其重要的意义,催化剂的理性设计/筛选是现代催化化学研究者的一个重要的目标。其中,火山型曲线是一个的重要工具。它指出对于一个催化反应来说,其催化活性针对关键物种吸附能来说呈一条先上升后下降的曲线,要求最佳催化剂对中间体的吸附能不能太高也不能太低。近几十年来,密度泛函理论等第一性原理计算方法的发展让许多催化剂表面反应微观物理量的计算成为了可能,这极大地拓展了火山型曲线的应用范围。 ;然而,对于火山型曲线根源的解释,人们却并非了解得十分清楚;一些基本科学概念的理解很多还是基于经验性的Sabatier原理:吸附太弱不利于吸附、太强不利于脱附。针对该问题的科学解析,本文进行了详细的动力学探究,试图以完全数学解析的方式回答催化反应中火山型曲线的必然存在性、产生根源及在催化活性预测中的内涵。本文采用了两步催化模型以及微动力学来进行速率方程的推导,并考虑BEP关系(基元反应的能垒与其反应焓存在线性关系)的应用,最终将整体反应速率转化为中间体吸附能相关的单值函数。基于对该函数的系列推导和分析,得到如下基本结论:(1)从数学上以一个完全的解析形式证明了催化反应中火山型曲线的存在。(2)通过对比催化反应与与之对应的气相反应,我们证明了:若无催化剂参与反应,则火山型曲线不会产生;由于催化剂表面的参与,随着催化剂吸附能力的增强,其表面会因为吸附作用而被占据毒化,导致反应速率存在一个最大值,即形成火山型曲线。从概念上讲,火山型曲线的根源是由“吸附过程引发表面活性位占据”这一自毒化效应造成的,它的存在可能体现为多相催化的基本属性。(3)数值模拟解析展示了表面反应与气相反应的区别,印证了我们的数学解析结论。同时,通过一定的简化,我们对火山型曲线中各部分的斜率进行了研究。结果发现,对于吸附决速过程,催化反应和气相反应斜率相同,其差别主要出现在脱附决速过程。在此阶段由于吸附能过大,表面被毒化,表面反应速率开始下降;而气相反应的速率依然上升。(4)表面反应速率方程的分解和简化结果表明,最佳催化剂在反应中的空活性位点覆盖度和其BEP关系的斜率存在内在关联关系(θ*opt=1–α),据此讨论了其在催化剂寻优过程中的意义。尝试解释了(a)合成氨反应中正逆反应所需最佳催化剂不同的现象;(b)合成氨或CO甲烷化反应最佳催化剂为前过渡金属、而CO/NO氧化等为后过渡金属这一典型催化现象的物理图像。最后,针对火山型曲线理论框架在实际催化剂理论筛选寻优中的应用,我们简要综述了本课题组近年来在光解水制氢Pt基助催化剂和染料敏化太阳能电池的对电极材料设计方面的理论进展。
关键词:
火山型曲线
,
多相催化
,
密度泛函理论
,
微观动力学
,
催化剂筛选
,
两步模型
晏世伟
原子核物理评论
doi:10.11804/NuclPhysRev.30.03.231
首先回顾了描写核多体系统输运现象的一些主要模型和方法,然后介绍了输运现象微观动力学基础研究上一些新的结果,强调了单粒子运动动力学特征在建立集体输运方程和理解超重核合成机制上的重要作用.能量耗散和熵产生的数值计算结果表明,集体运动耗散过程可分为退相干、弛豫和定态等3个阶段,弛豫过程通常表现为非常复杂的反常扩散过程.在这些理论工作的基础上,提出了一种自洽地分离核多体系统集体和单粒子变量的可能途径.
关键词:
单粒子运动
,
微观动力学
,
输运方程