{"currentpage":1,"firstResult":0,"maxresult":10,"pagecode":5,"pageindex":{"endPagecode":5,"startPagecode":1},"records":[{"abstractinfo":"采用磁控溅射工艺和复合靶技术制备FeCoB-SiO2磁性纳米颗粒;利用X射线衍射仪、扫描探针显微镜分析这类薄膜的微结构和形貌特征;采用振动样品磁强计、四探针法、微波矢量分析仪及谐振腔法测量薄膜试样的磁电性能和微波复磁导率;重点对SiO2介质相含量、薄膜微结构对电磁性能产生重要影响的机理做了分析和探讨.结果表明,这类FeCoB-SiO2磁性纳米颗粒具有良好的软磁性能和高频电磁性能,2GHz时,磁导率μ>50,可以应用于高频微磁器件中.","authors":[{"authorName":"何华辉","id":"fe7b20ed-4781-43bd-94e0-cb915e78630f","originalAuthorName":"何华辉"},{"authorName":"邓联文","id":"ce445ce1-3d94-42d1-b557-cb90e2e5c3c6","originalAuthorName":"邓联文"},{"authorName":"冯则坤","id":"f0f44639-9682-4cff-b8e3-938f7524d6ff","originalAuthorName":"冯则坤"},{"authorName":"江建军","id":"c38e2cc4-b198-43be-8e77-b7b5da4c45df","originalAuthorName":"江建军"}],"doi":"","fpage":"60","id":"0069f09f-2abe-45bd-ac9d-95963875a078","issue":"z1","journal":{"abbrevTitle":"GNCL","coverImgSrc":"journal/img/cover/GNCL.jpg","id":"33","issnPpub":"1001-9731","publisherId":"GNCL","title":"功能材料"},"keywords":[{"id":"9ea88582-33cb-41b9-943c-4b58519ec13b","keyword":"纳米颗粒","originalKeyword":"纳米颗粒膜"},{"id":"a0800b22-b973-41b9-8eb6-96deb93b8ec2","keyword":"微波物性","originalKeyword":"微波物性"},{"id":"d9f6c35d-6029-49ae-8fbc-491674462f9a","keyword":"复磁导率","originalKeyword":"复磁导率"},{"id":"f6fb1c94-8d31-40de-9e65-d864ce8a9eb2","keyword":"微磁器件","originalKeyword":"微磁器件"}],"language":"zh","publisherId":"gncl2004z1010","title":"磁性纳米颗粒微波物性研究","volume":"35","year":"2004"},{"abstractinfo":"应用对靶磁控溅射法在玻璃基底上制备了类三明治结构C/Co/C纳米颗粒,并进行了原位退火.发现磁性层厚度对C/Co/C颗粒的微结构和磁特性有明显影响.在400℃退火的样品具有很好的六角密堆积结构,磁矩很好的排列在面内.随着磁性层Co层厚度的增加,矫顽力Hc先增大然后减小,粒径和磁畴簇略微增大,样品的表面粗糙度Ra也减小到了0.5 nm左右.","authors":[{"authorName":"孙会元","id":"0e9cb602-d799-4a18-98b9-98b2b844271b","originalAuthorName":"孙会元"},{"authorName":"封顺珍","id":"3f717ec9-0424-48f2-9084-10a75710c48a","originalAuthorName":"封顺珍"},{"authorName":"聂向富","id":"d200b7d9-6efb-44c2-808d-521c7d6a14ae","originalAuthorName":"聂向富"},{"authorName":"孙玉平","id":"d858bb8b-42d1-4901-9b19-2b5824cd6291","originalAuthorName":"孙玉平"}],"doi":"10.3321/j.issn:1005-3093.2005.02.009","fpage":"165","id":"aa188eaa-24f2-4c51-8165-953f4b833c44","issue":"2","journal":{"abbrevTitle":"CLYJXB","coverImgSrc":"journal/img/cover/CLYJXB.jpg","id":"16","issnPpub":"1005-3093","publisherId":"CLYJXB","title":"材料研究学报"},"keywords":[{"id":"513a0597-a817-4d55-a5e9-f4033baa8fac","keyword":"无机非金属材料","originalKeyword":"无机非金属材料"},{"id":"c91032fa-13f6-4906-838a-84c1fd26ef73","keyword":"纳米颗粒","originalKeyword":"纳米颗粒膜"},{"id":"ef896fb9-22b6-45b7-b595-79874d9892eb","keyword":"磁控溅射","originalKeyword":"磁控溅射"},{"id":"46b0ac4f-e4f3-424f-86ea-76beb8185c5c","keyword":"矫顽力","originalKeyword":"矫顽力"},{"id":"5d246aeb-115e-457f-ac2c-a56a2c44c606","keyword":"剩磁比","originalKeyword":"剩磁比"},{"id":"80fa7b99-a9c4-4dc9-9512-21677a8e1f4c","keyword":"原位退火","originalKeyword":"原位退火"}],"language":"zh","publisherId":"clyjxb200502009","title":"C/Co/C纳米颗粒的制备及特性","volume":"19","year":"2005"},{"abstractinfo":"在室温下,用对靶磁控溅射法制备了系列类三明治结构C/Co/C颗粒.C靶和Co靶分别采用射频溅射和直流对靶溅射模式,并且随后进行了原位退火.用振动样品磁强计(VSM)和扫描探针显微镜(SPM)系统研究了C/Co/C颗粒的微结构和磁特性与磁性层厚度、非磁性层厚度、退火温度的关系.X射线衍射(XRD)图样显示出退火400℃的样品具有很好的六角密堆积结构.扫描探针显微镜图样和δM曲线说明Co纳米颗粒嵌在非晶质的C母基内.振动样品磁强计测量表明磁矩很好的排列在面内,随着磁性层Co层厚度的增加,矫顽力(Hc)先增大然后减小.在Co层厚度为20nm,C层厚度为30nm,退火温度400℃时,矫顽力达到最大值,剩磁比(S)接近于1.","authors":[{"authorName":"封顺珍","id":"19b9607e-9483-4820-b4b6-204e328ffb68","originalAuthorName":"封顺珍"},{"authorName":"孙会元","id":"6d690dae-bab8-49c1-9ffc-22da6cda2c7b","originalAuthorName":"孙会元"},{"authorName":"于红云","id":"b2eb642e-c63e-4145-96c0-ba8a8ff50dc7","originalAuthorName":"于红云"},{"authorName":"高凤菊","id":"b807b203-3011-41b7-a1e9-a02327ab9bfb","originalAuthorName":"高凤菊"},{"authorName":"贾连芝","id":"e92806a3-4791-42ce-afe3-8c2a72628534","originalAuthorName":"贾连芝"}],"doi":"","fpage":"645","id":"0ca82412-097c-427d-9831-0c5b1af3499c","issue":"z1","journal":{"abbrevTitle":"GNCL","coverImgSrc":"journal/img/cover/GNCL.jpg","id":"33","issnPpub":"1001-9731","publisherId":"GNCL","title":"功能材料"},"keywords":[{"id":"bea47904-354d-41fe-a4d6-7d2b202d5763","keyword":"纳米颗粒","originalKeyword":"纳米颗粒膜"},{"id":"a58b986f-588c-44e7-aa21-ffc0cdb83296","keyword":"磁控溅射","originalKeyword":"磁控溅射"},{"id":"82c4eeaa-4c86-4a89-a9b6-d430f96afc7a","keyword":"矫顽力","originalKeyword":"矫顽力"},{"id":"0f8fd6c0-187b-4f97-9506-ccb7c1f5c072","keyword":"剩磁比","originalKeyword":"剩磁比"},{"id":"c80b7a96-e0bd-4b34-8777-27f92756a24f","keyword":"原位退火","originalKeyword":"原位退火"}],"language":"zh","publisherId":"gncl2004z1175","title":"类三明治结构C/Co/C纳米颗粒微结构和磁特性的研究","volume":"35","year":"2004"},{"abstractinfo":"研究了采用磁控溅射沉积方法制备的FeCoB-SiO2纳米颗粒.分析在77~300k的温度范围测量得到的电阻率温变曲线,表明FeCoB-SiO2纳米颗粒在不同体积比含量下存在不同的导电行为,由此可获得随着金属颗粒组分的增加该颗粒由绝缘性质导电机理向金属性质导电机理转变的逾渗阈值.进一步的测量在2GHz下获取薄膜的复数磁导率、复数介电常数和静态磁参数,表明在逾渗阈值附近,FeCoB-SiO2纳米颗粒具有较高的磁导率和较低的介电常数,较高的电阻率,较高的饱和磁化强度.研究结果表明颗粒电磁特性在磁记录材料、磁传感器、磁存储和雷达波吸收材料等方面具有一定的应用前景.","authors":[{"authorName":"郭磊","id":"86436e6b-90ad-4f68-a53e-86072892717c","originalAuthorName":"郭磊"},{"authorName":"江建军","id":"88f39093-8def-4286-942c-38a04d0c3a68","originalAuthorName":"江建军"},{"authorName":"邓联文","id":"ce6be2a7-55cc-4b7b-a43a-32414d5741df","originalAuthorName":"邓联文"},{"authorName":"何华辉","id":"6ff27767-5076-4325-a109-bf2eaaeb74ba","originalAuthorName":"何华辉"}],"doi":"","fpage":"651","id":"509a3080-78ef-4612-9c7d-3cd3e3bf60c9","issue":"z1","journal":{"abbrevTitle":"GNCL","coverImgSrc":"journal/img/cover/GNCL.jpg","id":"33","issnPpub":"1001-9731","publisherId":"GNCL","title":"功能材料"},"keywords":[{"id":"659d02b0-54ca-40fe-b53f-18b97e7152db","keyword":"纳米颗粒","originalKeyword":"纳米颗粒膜"},{"id":"9c6fbda7-84a8-4e27-abf1-f56ebf51dbd7","keyword":"逾渗阈值","originalKeyword":"逾渗阈值"},{"id":"ab4a958d-6969-42ae-a758-699894da2732","keyword":"体积比","originalKeyword":"体积比"},{"id":"8539c57a-9210-4ddd-ab47-74c7d280b3a1","keyword":"电阻率","originalKeyword":"电阻率"}],"language":"zh","publisherId":"gncl2004z1177","title":"FeCoB-SiO2颗粒逾渗电导与微波电磁特性研究","volume":"35","year":"2004"},{"abstractinfo":"用磁控溅射法制备了FeCoSiB纳米磁性颗粒,使用微波矢量网络分析仪,用波导法在C波段测量了溅射的微波复数磁导率、复介电常数的频散特性,分析了纳米磁性颗粒微波频率下高导磁率的机理.实验结果表明,纳米磁性颗粒除在民用的超薄、超轻信息设备中作为新一代微磁器件的重要材料外,还将有可能成为一种全新、大跨度的抗电磁干扰及雷达波吸波材料.","authors":[{"authorName":"冯则坤","id":"b51e0fe0-ef49-4df6-afd8-51b64ecdcc38","originalAuthorName":"冯则坤"},{"authorName":"张秀成","id":"ec841eb6-870a-4729-8e83-db25f2db0e54","originalAuthorName":"张秀成"},{"authorName":"何华辉","id":"0b945644-ae6a-4b86-b6e0-e414cdf1b9f4","originalAuthorName":"何华辉"}],"doi":"10.3969/j.issn.1004-244X.2002.03.007","fpage":"19","id":"12680861-4537-423d-b619-f0fc95dd44a1","issue":"3","journal":{"abbrevTitle":"BQCLKXYGC","coverImgSrc":"journal/img/cover/BQCLKXYGC.jpg","id":"4","issnPpub":"1004-244X","publisherId":"BQCLKXYGC","title":"兵器材料科学与工程 "},"keywords":[{"id":"41bfc014-f083-40d0-935e-b7bcc40f33dd","keyword":"纳米颗粒","originalKeyword":"纳米颗粒膜"},{"id":"85d01416-bf67-4a9d-ad90-8ff599b04044","keyword":"电磁特性","originalKeyword":"电磁特性"},{"id":"8b062ff3-d994-4291-8a09-c6c6ac9d24de","keyword":"磁导率","originalKeyword":"磁导率"}],"language":"zh","publisherId":"bqclkxygc200203007","title":"纳米磁性颗粒的制备及微波电磁特性研究","volume":"25","year":"2002"},{"abstractinfo":"在室温下,应用对靶磁控溅射设备制备了系列Cu(x nm)/CoCrPt(40nm)/Cu(20nm)三明治结构的纳米颗粒,随后进行了原位退火.实验发现Cu覆盖层的厚度(x)对颗粒的微结构和磁特性有很大影响.样品垂直方向的矫顽力在x=11nm时达到最大,为138kA/m,平行于面方向的矫顽力基本上与x的变化无关,且所有的样品都显示出很强的垂直各向异性.退火后的CoCrPt薄膜呈六角密堆积(HCP)结构,AFM和MFM测量显示在x=11nm时,颗粒的平均粒径和磁畴尺寸均为最小.开关场分布(SFD)的测量表明,退火有效地减弱了颗粒间的交换耦合作用.","authors":[{"authorName":"胡骏","id":"59450e06-d2f3-4892-90a3-2f3ca59685d1","originalAuthorName":"胡骏"},{"authorName":"孙会元","id":"5a143eaf-0aa0-4343-b688-70f291ca8db3","originalAuthorName":"孙会元"},{"authorName":"苏振访","id":"26086313-32bd-41d0-b938-22972edb54fb","originalAuthorName":"苏振访"},{"authorName":"许佳玲","id":"fae1c42b-4686-4435-84c0-ef2dd534b1b3","originalAuthorName":"许佳玲"},{"authorName":"封顺珍","id":"83768add-2053-4fc0-944d-49f18ad98fd8","originalAuthorName":"封顺珍"}],"doi":"","fpage":"546","id":"3134b0d2-3aaf-4531-9a24-32d5a899a48e","issue":"4","journal":{"abbrevTitle":"GNCL","coverImgSrc":"journal/img/cover/GNCL.jpg","id":"33","issnPpub":"1001-9731","publisherId":"GNCL","title":"功能材料"},"keywords":[{"id":"e2481a35-cfd8-44ec-a2b4-0137b932f19e","keyword":"磁记录","originalKeyword":"磁记录"},{"id":"1fe9ce20-d5d6-4502-a9f4-e49de1ccd8c2","keyword":"纳米颗粒","originalKeyword":"纳米颗粒膜"},{"id":"bdab1747-dbbc-48f6-be98-21b31436a6f2","keyword":"矫顽力","originalKeyword":"矫顽力"},{"id":"5c2cfb33-140c-473d-8777-a2ee338e9701","keyword":"垂直各向异性","originalKeyword":"垂直各向异性"}],"language":"zh","publisherId":"gncl200604011","title":"Cu覆盖层对CoCrPt颗粒的微结构和磁特性的影响","volume":"37","year":"2006"},{"abstractinfo":"介绍了纳米半导体颗粒的制备方法及研究现状,提出了纳米半导体颗粒研究的问题和今后的发展方向.","authors":[{"authorName":"栾彩霞","id":"fd2a30b5-68e6-4710-bf39-c28402ac40a6","originalAuthorName":"栾彩霞"},{"authorName":"柴跃生","id":"e6442213-10a1-49f8-a2a9-e06b5fb3dbc2","originalAuthorName":"柴跃生"},{"authorName":"张敏刚","id":"b7f9a18f-dc35-4bbe-a0b6-6db6f4906ea7","originalAuthorName":"张敏刚"}],"doi":"","fpage":"39","id":"469f4297-de56-46b5-bb19-f1b47531895b","issue":"z1","journal":{"abbrevTitle":"CLDB","coverImgSrc":"journal/img/cover/CLDB.jpg","id":"8","issnPpub":"1005-023X","publisherId":"CLDB","title":"材料导报"},"keywords":[{"id":"e57e1994-5d39-4395-bcdc-f4db23e32ccc","keyword":"纳米半导体颗粒","originalKeyword":"纳米半导体颗粒膜"},{"id":"9abaa8fa-6e31-4310-b294-5f76a24fee84","keyword":"制备方法","originalKeyword":"制备方法"},{"id":"065abbda-28ce-4619-a0d1-53f9355aea15","keyword":"研究现状","originalKeyword":"研究现状"}],"language":"zh","publisherId":"cldb2003z1013","title":"纳米半导体颗粒的研究现状","volume":"17","year":"2003"},{"abstractinfo":"采用射频溅射法制备了纳米“铁磁金属-半导体基体”Fex(ZnSe)1-x颗粒,并研究了其结构和磁特性。根据颗粒低场磁化率χ(T)温度关系和不同温度下的磁滞回线,证实了在一定的温度范围内,颗粒中的纳米颗粒表现出磁性弛豫效应:当截止温度TB=50K时,颗粒的磁性由超顺磁性转变为铁磁性。在截止温度以上,其饱和磁化强度MS(T)温度关系符合Bloch的自旋波T3/2定律,探讨分析了自旋波常数增大的原因。","authors":[{"authorName":"张林","id":"33a1ceb6-7283-4b27-ada4-18874a38f7c4","originalAuthorName":"张林"},{"authorName":"张连生","id":"36321706-3eeb-4bbf-8331-4a1f8dfb585d","originalAuthorName":"张连生"}],"categoryName":"|","doi":"","fpage":"277","id":"1b35437f-d4df-46d1-a8da-1fcc0a8fbd6b","issue":"3","journal":{"abbrevTitle":"JSXB","coverImgSrc":"journal/img/cover/JSXB.jpg","id":"48","issnPpub":"0412-1961","publisherId":"JSXB","title":"金属学报"},"keywords":[{"id":"89a8731e-61ec-4539-94b3-c768279d147b","keyword":"纳米金属颗粒","originalKeyword":"纳米金属颗粒膜"},{"id":"21935695-d48c-46a1-995d-62f3d0c3aa79","keyword":"structure","originalKeyword":"structure"},{"id":"85458c82-2a6d-47c9-a8d5-bfdfc996bb93","keyword":"super-paramagnetic property","originalKeyword":"super-paramagnetic property"},{"id":"65de4d47-1a5f-4e91-b29f-f4d5fb598e4d","keyword":"spin wave","originalKeyword":"spin wave"}],"language":"zh","publisherId":"0412-1961_2008_3_17","title":"纳米Fe-ZnSe颗粒的结构与磁性","volume":"44","year":"2008"},{"abstractinfo":"研究了射频溅射法制备的纳米\"铁磁金属一半导体基体\"Fex(ZnSe)1-x颗粒的光学特性.透射光谱测量结果表明,当Fe体积分数为35%时,颗粒样品的可见光透过率达到50%以上.研究发现,在ZnSe薄膜基体中嵌入纳米颗粒的Fe-ZnSe颗粒中,电子的带间跃迁为直接跃迁,其带隙随着Fe在颗粒中所占体积分数的增加而变宽.","authors":[{"authorName":"张林","id":"b51e1eb0-0a14-4e7e-b496-119c77d9b479","originalAuthorName":"张林"},{"authorName":"代由勇","id":"1b106aed-84dd-4513-9292-5a99d9f93315","originalAuthorName":"代由勇"},{"authorName":"原晓波","id":"f642a9ff-b784-43b8-819e-32838985f681","originalAuthorName":"原晓波"}],"doi":"","fpage":"1532","id":"24b595a0-7772-4577-996e-5761db77d196","issue":"9","journal":{"abbrevTitle":"GNCL","coverImgSrc":"journal/img/cover/GNCL.jpg","id":"33","issnPpub":"1001-9731","publisherId":"GNCL","title":"功能材料"},"keywords":[{"id":"a6b7073e-d91e-4057-8e73-3f22f69690e1","keyword":"纳米金属颗粒","originalKeyword":"纳米金属颗粒膜"},{"id":"924ed72c-3fe8-4f35-af2f-e8605d05592f","keyword":"透射光谱","originalKeyword":"透射光谱"},{"id":"ee28b958-afd4-4020-867a-b25a4828c11b","keyword":"直接跃迁","originalKeyword":"直接跃迁"}],"language":"zh","publisherId":"gncl200809034","title":"纳米Fe-ZnSe颗粒的光学特性","volume":"39","year":"2008"},{"abstractinfo":"采用射频溅射法制备了纳米铁磁金属-半导体基体Fe0.35(ZnSe)0.65颗粒,并研究了其结构和磁特性.根据颗粒低场磁化率x(T)温度关系和不同温度下的磁滞回线,证实了在一定的温度范围内,颗粒中的纳米颗粒表现出磁性弛豫效应.当截止温度TB=50 K时.颗粒的磁性由超顺磁性转变为铁磁性.在截止温度以上,其饱和磁化强度Ms(T)温度关系符合Bloch的自旋波T3/2定律,探讨分析了自旋波常数增大的原因.","authors":[{"authorName":"张林","id":"c355f521-3a1f-483f-b83d-cbe8626c5562","originalAuthorName":"张林"},{"authorName":"张连生","id":"de267b84-33f1-40bb-9bb3-c9fd7a6a9071","originalAuthorName":"张连生"}],"doi":"10.3321/j.issn:0412-1961.2008.03.004","fpage":"277","id":"46be0a66-9f2c-4040-a508-f42bc8ce5f3b","issue":"3","journal":{"abbrevTitle":"JSXB","coverImgSrc":"journal/img/cover/JSXB.jpg","id":"48","issnPpub":"0412-1961","publisherId":"JSXB","title":"金属学报"},"keywords":[{"id":"4fa15921-6cc4-41ac-aeb2-6bf72f5d88bd","keyword":"Fe-ZnSe","originalKeyword":"Fe-ZnSe"},{"id":"23f5169e-d05d-4b25-9510-68c337e7649a","keyword":"纳米金属颗粒","originalKeyword":"纳米金属颗粒膜"},{"id":"e4a3268a-e2d8-4dcc-9b91-93747d586c96","keyword":"结构","originalKeyword":"结构"},{"id":"f154dd9e-3123-411b-a481-68e0b63b0053","keyword":"超顺磁性","originalKeyword":"超顺磁性"},{"id":"8fe56ce5-3328-43c7-833a-a598069f0a88","keyword":"自旋波","originalKeyword":"自旋波"}],"language":"zh","publisherId":"jsxb200803004","title":"纳米Fe-ZnSe颗粒的结构与磁性","volume":"44","year":"2008"}],"totalpage":4952,"totalrecord":49511}