{"currentpage":1,"firstResult":0,"maxresult":10,"pagecode":5,"pageindex":{"endPagecode":5,"startPagecode":1},"records":[{"abstractinfo":"本文采用沉淀法以非离子表面活性剂、乙醇及可溶性盐的混合体系为模板,通过温度控制,成功制备出介孔纳米钼酸钡材料.采用XRD、TEM、Raman以及FT-IR对材料的晶体结构、形貌及谱学特性进行表征分析.实验结果表明,该材料的孔径为3.62 nm左右,且钼酸钡晶体的空间群为I41/a,其晶胞具有对称中心,属于D4h点群.另外,探讨了可能的成孔机理.","authors":[{"authorName":"蒋文俊","id":"b2e074b7-2c29-463f-b68f-2fc4258a4749","originalAuthorName":"蒋文俊"},{"authorName":"张春祥","id":"54b7fe50-422d-4322-ab2f-3eed6f4ab135","originalAuthorName":"张春祥"},{"authorName":"朱俊武","id":"6cffbbb9-0c9f-499b-a076-e47bcf8c59c7","originalAuthorName":"朱俊武"},{"authorName":"陆路德","id":"04a8ebd9-349a-4e3e-9e8e-1e212cca7f57","originalAuthorName":"陆路德"},{"authorName":"刘孝恒","id":"83bfb4f3-2770-4e6d-8d15-e787d7146819","originalAuthorName":"刘孝恒"},{"authorName":"汪信","id":"9e2b2916-cb3a-42dd-9b69-f2d6a12a8743","originalAuthorName":"汪信"},{"authorName":"杨绪杰","id":"92fea600-e89b-43d5-80c4-0e2f21c01d8b","originalAuthorName":"杨绪杰"}],"doi":"","fpage":"1385","id":"2a6ca30b-51b5-4111-a185-58caca613f0e","issue":"6","journal":{"abbrevTitle":"RGJTXB","coverImgSrc":"journal/img/cover/RGJTXB.jpg","id":"57","issnPpub":"1000-985X","publisherId":"RGJTXB","title":"人工晶体学报"},"keywords":[{"id":"f15b96e0-eccf-4118-94a6-2b32c25c38cf","keyword":"模板剂","originalKeyword":"模板剂"},{"id":"689357a1-32d5-4b11-875e-3132cfeafd47","keyword":"介孔材料","originalKeyword":"介孔材料"},{"id":"7dbe4410-ffea-4440-8779-e91aeeb4d1ae","keyword":"谱学特性","originalKeyword":"谱学特性"},{"id":"157904cc-7efd-4d10-99cd-543ab20a1d24","keyword":"表征","originalKeyword":"表征"}],"language":"zh","publisherId":"rgjtxb98200806016","title":"介孔纳米钼酸钡粉末的制备及表征","volume":"37","year":"2008"},{"abstractinfo":"以Cu(NO3)2和NaOH为原料,以水合肼为还原剂,通过沉淀法在室温下制备了纳米Cu2O. 采用X射线衍射、透射电镜和X射线光电子能谱等手段对产物进行了表征,并用热分析法考察了不同形貌的纳米Cu2O对高氯酸铵热分解的催化作用. 结果表明,通过改变NaOH溶液的加入量可分别得到长针形和多边形的纳米Cu2O. 通过调节反应物浓度可以将纳米Cu2O粒径控制在19~68 nm. 不同形貌的纳米Cu2O均能强烈催化高氯酸铵的热分解,其中分散性良好的多边形纳米Cu2O的催化活性较高,添加2%的多边形纳米Cu2O可使高氯酸铵的高温分解温度降低103 ℃,分解放热量由590 J/g增至 1350 J/g.","authors":[{"authorName":"朱俊武","id":"455be65c-256e-4f43-87d7-086bd685a443","originalAuthorName":"朱俊武"},{"authorName":"陈海群","id":"bd63391d-cabd-4453-99c7-b9d92ccb15e8","originalAuthorName":"陈海群"},{"authorName":"谢波","id":"c56d6285-ac52-4dab-86f3-56cd0cc26c55","originalAuthorName":"谢波"},{"authorName":"杨绪杰","id":"3dd77e2a-5bdd-4cdf-a593-0c0fc72ac592","originalAuthorName":"杨绪杰"},{"authorName":"陆路德","id":"aacc2db9-29de-4254-b746-91fd7c6972fd","originalAuthorName":"陆路德"},{"authorName":"汪信","id":"8db1c606-10cb-47fa-be69-895f2afc4aeb","originalAuthorName":"汪信"}],"doi":"","fpage":"637","id":"0d0254d4-0b2c-4d1d-9518-e75830b685de","issue":"8","journal":{"abbrevTitle":"CHXB","coverImgSrc":"journal/img/cover/CHXB.jpg","id":"18","issnPpub":"0253-9837","publisherId":"CHXB","title":"催化学报 "},"keywords":[{"id":"da92c6b6-e5c7-4e07-9ca7-19bfbbc51c60","keyword":"氧化亚铜","originalKeyword":"氧化亚铜"},{"id":"1f505d75-e088-45f2-951e-e560cb1a7458","keyword":"沉淀法","originalKeyword":"沉淀法"},{"id":"99381669-dead-43f4-a431-be0a0a2ffa76","keyword":"高氯酸铵","originalKeyword":"高氯酸铵"},{"id":"4ff12df0-8aab-4228-a646-9187f85cc65d","keyword":"热分解","originalKeyword":"热分解"}],"language":"zh","publisherId":"cuihuaxb200408010","title":"纳米Cu2O的制备及其对高氯酸铵热分解的催化性能","volume":"25","year":"2004"},{"abstractinfo":"首次以天然红辉沸石水热合成了Y型、P型分子筛,以IR研究了水热合成体系中分子筛结构的演变及晶相分布规律.研究表明,在高H2O/Na2O、低Ca2+/Na+体系中,主晶相为Y型分子筛,在低H2O/Na2O、高Ca2+/Na+体系中,主晶相为P型分子筛.","authors":[{"authorName":"李酽","id":"379f1cc5-5bcd-4f77-988d-47c8f4349252","originalAuthorName":"李酽"},{"authorName":"汪信","id":"26d6a15a-3e8c-44fc-af73-9f72790ca2f3","originalAuthorName":"汪信"},{"authorName":"岳明波","id":"d77d7d0c-9a14-41d1-9454-4c43bfc636ef","originalAuthorName":"岳明波"},{"authorName":"陆路德","id":"98aa1797-e6ea-4993-a80c-72bf403fae77","originalAuthorName":"陆路德"},{"authorName":"朱俊武","id":"eff4ca3d-05c6-4143-839e-8506875514ae","originalAuthorName":"朱俊武"}],"doi":"","fpage":"63","id":"63797aa6-780a-407a-853d-a06ac2c6a3cc","issue":"11","journal":{"abbrevTitle":"CLDB","coverImgSrc":"journal/img/cover/CLDB.jpg","id":"8","issnPpub":"1005-023X","publisherId":"CLDB","title":"材料导报"},"keywords":[{"id":"878fa6cb-1cf6-4420-8e92-33361dd2d858","keyword":"红辉沸石","originalKeyword":"红辉沸石"},{"id":"008d0cfa-9014-4428-a151-4d77ae84efa0","keyword":"水热合成","originalKeyword":"水热合成"},{"id":"0cc511eb-863f-47ce-9ae3-40f3979c4112","keyword":"Y型分子筛","originalKeyword":"Y型分子筛"},{"id":"024805c7-2f94-4db6-a1de-7caab16e7cce","keyword":"P型分子筛","originalKeyword":"P型分子筛"},{"id":"734bf2a7-cf3a-4647-81a4-057e2b9a09dd","keyword":"红外光谱","originalKeyword":"红外光谱"}],"language":"zh","publisherId":"cldb200111023","title":"红辉沸石合成Y型和P型分子筛的IR研究","volume":"15","year":"2001"},{"abstractinfo":"以硝酸镧和硝酸钴为原料, 通过硬脂酸法制备了纳米LaCoO3.采用红外光谱、 X射线衍射、透射电镜等测试手段对产物进行了表征, 并用热分析法考察了不同含量的纳米LaCoO3对高氯酸铵热分解的催化作用.结果表明, 在600 ℃下可获得结晶良好的钙钛矿型纳米LaCoO3, 粒径约40~60 nm.纳米LaCoO3能强烈催化高氯酸铵的热分解, 催化作用随着LaCoO3含量的增加而增强.添加5%的纳米LaCoO3可使高氯酸铵的高温分解温度下降116 ℃, 分解放热量也由2%时的1390 J·g-1增至1600 J·g-1.","authors":[{"authorName":"朱俊武","id":"52a5541d-5c7e-4121-a655-dffa0a223521","originalAuthorName":"朱俊武"},{"authorName":"王艳萍","id":"76337cf2-dc90-4629-b796-f5d607caf3c1","originalAuthorName":"王艳萍"},{"authorName":"汪信","id":"1e6cc266-a7cf-4476-9619-670a715ccb6a","originalAuthorName":"汪信"},{"authorName":"杨绪杰","id":"9cc9a28c-91bb-4963-a261-dc33878181ec","originalAuthorName":"杨绪杰"},{"authorName":"陆路德","id":"6f462059-cbd0-41ec-82c3-7d0b16195dba","originalAuthorName":"陆路德"}],"doi":"","fpage":"364","id":"8822d6b9-2ac2-41a2-aa45-50f00d029ee6","issue":"3","journal":{"abbrevTitle":"ZGXTXB","coverImgSrc":"journal/img/cover/ZGXTXB.jpg","id":"86","issnPpub":"1000-4343","publisherId":"ZGXTXB","title":"中国稀土学报"},"keywords":[{"id":"f82b836c-886a-44d9-a40a-06ebc01631c4","keyword":"LaCoO3","originalKeyword":"LaCoO3"},{"id":"f8cd8dda-7f33-45d0-84fa-c6df6c6a38b2","keyword":"硬脂酸法","originalKeyword":"硬脂酸法"},{"id":"7c61f2e3-9e6d-4a70-83b1-65b7e87a76df","keyword":"高氯酸铵","originalKeyword":"高氯酸铵"},{"id":"3247f8aa-3c9a-4e7d-a357-804bc561caae","keyword":"热分解","originalKeyword":"热分解"},{"id":"b499b1b9-b8bf-488b-b39c-fde7626d75e6","keyword":"催化性能","originalKeyword":"催化性能"},{"id":"27c19a0d-94c9-4d2d-a1e4-2ec55639c9ee","keyword":"稀土","originalKeyword":"稀土"}],"language":"zh","publisherId":"zgxtxb200703021","title":"纳米LaCoO3的制备及其对高氯酸铵分解的催化性能","volume":"25","year":"2007"},{"abstractinfo":"研究了水热反应条件对纳米CuO结构和形貌的影响.采用XRD、FTIR、TEM等测试手段对产物进行了表征,并用热分析法考察了不同粒径纳米CuO对高氯酸铵(AP)分解的催化作用.结果表明通过调节反应物浓度可以控制针状CuO直径在8~15nm,通过控制反应温度和反应时间可以得到CuO和Cu2O两种产物.不同粒径的纳米CuO均能强烈催化AP的分解,其中8nm的针状纳米CuO催化活性最强,可使AP高温分解峰降低93.64℃,分解放热量由590.12J/g增至1390J/g.","authors":[{"authorName":"朱俊武","id":"fc3799e0-49d7-41b2-aa02-6031b43742d4","originalAuthorName":"朱俊武"},{"authorName":"陈海群","id":"94643192-5178-407c-8810-a158dffc6a82","originalAuthorName":"陈海群"},{"authorName":"郝艳霞","id":"b83d3ccd-d8e6-4ecc-b45f-b1360b87d261","originalAuthorName":"郝艳霞"},{"authorName":"杨绪杰","id":"ce17d7e2-3f83-4e46-b496-44f488b34c6a","originalAuthorName":"杨绪杰"},{"authorName":"陆路德","id":"f7fea4d3-e89d-478d-b0eb-4729cf6582b8","originalAuthorName":"陆路德"},{"authorName":"汪信","id":"14f83102-1e58-40a1-9b9a-eaf4c7596b4f","originalAuthorName":"汪信"}],"doi":"10.3969/j.issn.1673-2812.2004.03.005","fpage":"333","id":"939b15d9-ff63-47e9-9edd-1964d8cf1902","issue":"3","journal":{"abbrevTitle":"CLKXYGCXB","coverImgSrc":"journal/img/cover/CLKXYGCXB.jpg","id":"13","issnPpub":"1673-2812","publisherId":"CLKXYGCXB","title":"材料科学与工程学报"},"keywords":[{"id":"1c862e9c-d2d6-41d6-b1cb-4435642a40cb","keyword":"水热法","originalKeyword":"水热法"},{"id":"fb0530bb-4fa9-4625-81ab-1c26d695574f","keyword":"针状CuO","originalKeyword":"针状CuO"},{"id":"86136048-9969-48fb-88d8-40ce2b8e3c7c","keyword":"催化性能","originalKeyword":"催化性能"}],"language":"zh","publisherId":"clkxygc200403005","title":"针状纳米CuO的制备及其催化性能研究","volume":"22","year":"2004"},{"abstractinfo":"以Cu(NO3)2为原料,乙二醇为溶剂和还原剂,制备了不同形貌的纳米Cu2O.通过X射线衍射,透射电子显微镜对产物进行了表征,并用热分析法考察了纳米Cu2O对高氯酸铵热分解的催化作用.结果表明,在乙二醇体系中少量水的加入对产物的形貌有着重要的影响.当加入少量水时,产物形貌由不规则状变为短棒状.不同形貌的纳米Cu2O均能强烈催化高氯酸铵的热分解,分散性较好的Cu2O使高氯酸铵的高温分解温度下降了约104℃,分解放热量由590J/g增至1450J/g.","authors":[{"authorName":"朱俊武","id":"f4f86352-c946-4261-b615-bb01541b1949","originalAuthorName":"朱俊武"},{"authorName":"王艳萍","id":"8fa008f4-bc7f-4618-bc1c-fa52efa8cead","originalAuthorName":"王艳萍"},{"authorName":"张莉莉","id":"4202a730-34e5-4b51-85a4-00cf488f9515","originalAuthorName":"张莉莉"},{"authorName":"杨绪杰","id":"18fb7968-bc66-4f83-b8f3-b04fae795696","originalAuthorName":"杨绪杰"},{"authorName":"陆路德","id":"e6265b97-8bb3-49bb-a7af-b6a0e685f265","originalAuthorName":"陆路德"},{"authorName":"汪信","id":"c501c934-5052-4cc1-a161-6e4ea7992b4f","originalAuthorName":"汪信"}],"doi":"10.3969/j.issn.1673-2812.2006.02.010","fpage":"209","id":"aa955faa-cd15-4c31-ac02-9189a7613b16","issue":"2","journal":{"abbrevTitle":"CLKXYGCXB","coverImgSrc":"journal/img/cover/CLKXYGCXB.jpg","id":"13","issnPpub":"1673-2812","publisherId":"CLKXYGCXB","title":"材料科学与工程学报"},"keywords":[{"id":"29907045-14a3-4352-979b-33eaf9b7e695","keyword":"乙二醇","originalKeyword":"乙二醇"},{"id":"1135f49d-e75b-4fc5-8f39-95dc2d231679","keyword":"氧化亚铜","originalKeyword":"氧化亚铜"},{"id":"378d1993-d66b-4c0f-9467-f87a80c04e47","keyword":"制备","originalKeyword":"制备"},{"id":"761f3f51-d08c-4a6b-aeb9-ef3648c02a23","keyword":"催化性能","originalKeyword":"催化性能"}],"language":"zh","publisherId":"clkxygc200602010","title":"乙二醇体系中纳米Cu2O的制备及其性能研究","volume":"24","year":"2006"},{"abstractinfo":"采用硬脂酸法在相对较低的温度下掺杂Nb制备了K2La1.8Nb0.2Ti3O10层状化合物.通过X射线衍射、透射电子显微镜、紫外-可见吸收光谱、拉曼光谱对产物进行了表征.结果表明,通过硬脂酸法在800℃可获得超细K2La1.8Nb0.2Ti3O10,颗粒尺寸为100~250 nm,经过Nb掺杂后的产物仍然保持层状结构,层间距约1.5nm.紫外-可见光谱表明掺杂前后的产物在紫外区均有较明显的吸收,但经Nb掺杂后的K2La1.8Nb0.2Ti3O10吸光度明显增强.","authors":[{"authorName":"朱俊武","id":"1da9c4d1-9d6c-4122-abe7-13430c059fd2","originalAuthorName":"朱俊武"},{"authorName":"吴继科","id":"378dbe5d-1608-4bbf-9653-32387b1bd1cb","originalAuthorName":"吴继科"},{"authorName":"张莉莉","id":"d051320a-5519-4842-aa25-dabc9ea93687","originalAuthorName":"张莉莉"},{"authorName":"杨绪杰","id":"6e5eae88-62f5-4a24-b84f-9674f71d15b2","originalAuthorName":"杨绪杰"},{"authorName":"陆路德","id":"674c0c4b-f0d2-4a4f-990f-3f361654477b","originalAuthorName":"陆路德"},{"authorName":"汪信","id":"8cd4209d-ae36-456c-9620-9d5c9cb8ea0b","originalAuthorName":"汪信"}],"doi":"10.3969/j.issn.1673-2812.2007.05.007","fpage":"680","id":"dc5179f4-1784-4aa8-8930-169fccbdfe7f","issue":"5","journal":{"abbrevTitle":"CLKXYGCXB","coverImgSrc":"journal/img/cover/CLKXYGCXB.jpg","id":"13","issnPpub":"1673-2812","publisherId":"CLKXYGCXB","title":"材料科学与工程学报"},"keywords":[{"id":"de8ee4af-28d9-4652-84cd-b9b182929d37","keyword":"K2La1.8Nb0.2Ti3O10","originalKeyword":"K2La1.8Nb0.2Ti3O10"},{"id":"2b6fd3fe-bfdb-44c8-8f8a-b988118a8b8c","keyword":"制备","originalKeyword":"制备"},{"id":"edfee15e-c6fb-45d8-99e4-cb367f684484","keyword":"硬脂酸法","originalKeyword":"硬脂酸法"},{"id":"c6bd2818-33a6-4273-ba75-2b7dd803d7bc","keyword":"掺杂","originalKeyword":"掺杂"}],"language":"zh","publisherId":"clkxygc200705007","title":"硬脂酸法制备层状K2La1.8Nb0.2Ti3O10","volume":"25","year":"2007"},{"abstractinfo":"采用气相色谱法测定了高温加速老化的红磷生成的磷化氢,用外标法定量.该方法的检测限达到0.001 μg/L,加标回收率大于97%,其相对标准偏差为2.35%~6.52%.研究了微量水和铁离子等在红磷产生磷化氢过程中的作用,结果表明:水是工业红磷产生磷化氢的必要条件,它为红磷生成磷化氢提供质子氢;随着红磷样品中水分的增加,它的氧化反应速度加快,磷化氢的生成量增加;但当水分含量达到一定数值时,磷化氢的增长幅度减缓;微量的铁盐影响红磷的氧化反应,不同酸的铁盐对反应的影响效果不同;亚铁氰化钾对抑制含铁盐红磷样品产生的磷化氢的释放有明显效果.","authors":[{"authorName":"陈海群","id":"3f2a3557-a534-4409-8b34-e8d2ea6d21c7","originalAuthorName":"陈海群"},{"authorName":"周亚红","id":"83169164-99fe-439d-bd81-99200237439c","originalAuthorName":"周亚红"},{"authorName":"朱俊武","id":"9d22fb09-e583-4ca3-8b4c-277dd315ca14","originalAuthorName":"朱俊武"},{"authorName":"杨绪杰","id":"38f5deea-24ba-4fa7-8889-ebd27383be8b","originalAuthorName":"杨绪杰"},{"authorName":"陆路德","id":"652784c5-f5e3-473e-9990-c2d8f898647b","originalAuthorName":"陆路德"},{"authorName":"汪信","id":"c2b01b0f-fc25-4d46-8e5f-8873f4a83111","originalAuthorName":"汪信"}],"doi":"10.3321/j.issn:1000-8713.2004.04.038","fpage":"442","id":"26a20fc4-aeb5-4a83-82e5-dce46195b97b","issue":"4","journal":{"abbrevTitle":"SP","coverImgSrc":"journal/img/cover/SP.jpg","id":"58","issnPpub":"1000-8713","publisherId":"SP","title":"色谱 "},"keywords":[{"id":"63213b12-73b8-4395-ba11-0edc9cb1ac9d","keyword":"气相色谱法","originalKeyword":"气相色谱法"},{"id":"43d1efbe-ee75-450a-b9bc-d8dc677dd104","keyword":"顶空进样","originalKeyword":"顶空进样"},{"id":"93de8376-9636-4165-8394-17111c3b67a4","keyword":"红磷降解","originalKeyword":"红磷降解"},{"id":"84548bd5-706e-49a0-8d43-20494e34ec73","keyword":"磷化氢","originalKeyword":"磷化氢"}],"language":"zh","publisherId":"sp200404038","title":"利用气相色谱顶空装置测定红磷储存过程中生成的磷化氢","volume":"22","year":"2004"},{"abstractinfo":"利用顶空气相色谱法和加速老化技术研究了工业红磷中微量杂质对磷化氢产生的影响以及减慢磷化氢产生的方法.混入抑制剂可以减慢磷化氢的释放速度,加入纳米氢氧化镁可大大减慢磷化氢的生成速度小于而使之0.4 mg/(m3·d),而且红磷的分散性和流动性很好.","authors":[{"authorName":"陈海群","id":"526ee674-a7a3-4971-b4d4-4357524060a9","originalAuthorName":"陈海群"},{"authorName":"朱俊武","id":"0bda5fae-7f3f-44f0-ab2d-aa03b3f7c431","originalAuthorName":"朱俊武"},{"authorName":"王海靖","id":"8f5a8c26-234e-4c90-b13a-27d77d394e25","originalAuthorName":"王海靖"},{"authorName":"杨绪杰","id":"ec747fd9-8330-4ae6-8c0c-2e38523e2c44","originalAuthorName":"杨绪杰"},{"authorName":"陆路德","id":"512d117e-8939-41d5-9d6c-a387bfa843e4","originalAuthorName":"陆路德"},{"authorName":"汪信","id":"27e9bb2a-37bc-4586-8e72-899336d27c6f","originalAuthorName":"汪信"}],"doi":"10.3969/j.issn.1000-0518.2004.11.014","fpage":"1141","id":"c05f31a6-3a8b-46dc-80f0-4a7fcfe1d368","issue":"11","journal":{"abbrevTitle":"YYHX","coverImgSrc":"journal/img/cover/YYHX.jpg","id":"73","issnPpub":"1000-0518","publisherId":"YYHX","title":"应用化学"},"keywords":[{"id":"b60a3694-a319-4e9c-a45e-cb5412952a34","keyword":"红磷","originalKeyword":"红磷"},{"id":"381e12e1-7a18-4cf0-8eff-ddc0f87e8b39","keyword":"顶空气相色谱法","originalKeyword":"顶空气相色谱法"},{"id":"f21e06ea-3dbe-4acf-a7d0-fae8d147fe6b","keyword":"磷化氢","originalKeyword":"磷化氢"}],"language":"zh","publisherId":"yyhx200411014","title":"红磷中磷化氢的缓释研究","volume":"21","year":"2004"},{"abstractinfo":"采用GPS卫星同步断电法对忠武管道进行了断电电位测量,对结果进行了分析,评价了忠武管道阴极保护系统的有效性,并提出了改进建议.结果表明,三层PE管道相比于环氧粉末涂层管道更容易出现过保护现象,而且还容易受到干扰;电位是反应管道所处状态的主要指标,阴极保护系统的通电电位呈规律分布,但断电电位影响因素复杂,无明显规律.","authors":[{"authorName":"罗鹏","id":"18512348-d250-458d-bf3e-c0e9710d5a5c","originalAuthorName":"罗鹏"},{"authorName":"金鑫","id":"b3f412f6-6973-42ba-9881-3e553616f798","originalAuthorName":"金鑫"},{"authorName":"徐承伟","id":"784ec7f1-f012-452a-ba06-7609c0b10b0f","originalAuthorName":"徐承伟"},{"authorName":"薛致远","id":"48838684-38dc-4b1e-96e1-c13bc71f5694","originalAuthorName":"薛致远"},{"authorName":"高强","id":"aa4f9f94-5b47-40f2-a60b-5c90d1f80e89","originalAuthorName":"高强"},{"authorName":"张永盛","id":"dcf5fb27-5c7a-4933-98b7-981aca29f748","originalAuthorName":"张永盛"}],"doi":"","fpage":"224","id":"670a796f-6251-4fb3-8541-c3fb55741e13","issue":"3","journal":{"abbrevTitle":"FSYFH","coverImgSrc":"journal/img/cover/FSYFH.jpg","id":"25","issnPpub":"1005-748X","publisherId":"FSYFH","title":"腐蚀与防护"},"keywords":[{"id":"3ed78c05-3e52-49dd-a17f-0e442c522d84","keyword":"阴极保护","originalKeyword":"阴极保护"},{"id":"75cb2ded-b721-47f2-93b6-852438d3e430","keyword":"通电电位","originalKeyword":"通电电位"},{"id":"bbbc7c8f-15ec-440e-8d5b-7e5162d1c5e7","keyword":"断电电位","originalKeyword":"断电电位"}],"language":"zh","publisherId":"fsyfh201103016","title":"忠武管道阴极保护断电电位测量结果分析","volume":"32","year":"2011"}],"totalpage":7,"totalrecord":65}