欢迎登录材料期刊网

材料期刊网

高级检索

  • 论文(1)
  • 图书()
  • 专利()
  • 新闻()

基于改进遗传算法优化Elman网络的板形识别方法

毕志敏 , 王焱

钢铁研究学报 doi:10.13228/j.boyuan.issn1001-0963.20160313

针对目前的板形缺陷识别方法精度不高、识别速度慢的问题,根据Elman神经网络模型可以反映系统动态特性,而且可以逼近任意非线性函数的特点,提出了一种利用改进的遗传算法优化Elman神经网络,使其泛化能力强、学习速度快、识别精度高,并建立板形缺陷模式识别模型的方法.为了验证该方法的识别能力,在隐层节点数与学习次数相同的条件下,分别与遗传算法优化的Elman网络和BP网络模型进行板形识别仿真对比分析.试验结果表明,改进遗传算法优化的Elman神经网络模型对板形缺陷识别精度高于BP网络等模型,并且具有收敛速度快的优点.

关键词: 改进遗传算法 , Elman神经网络 , 板形缺陷识别

出版年份

刊物分类

相关作者

相关热词