{"currentpage":1,"firstResult":0,"maxresult":10,"pagecode":5,"pageindex":{"endPagecode":5,"startPagecode":1},"records":[{"abstractinfo":"采用循环伏安扫描法和XPS、AFM技术对在NH4HCO3溶液中经过电化学改性处理的PAN-基碳纤维的电化学特性、表面化学构成和表面形貌变化进行了分析.结果表明,在NH4HCO3溶液中纤维表面主要发生了水的电解析氧反应和部分电活性物质的电化学氧化反应;纤维表面各含氧官能团含量随处理时间的延长不断变化,NH+4与纤维表面官能团反应使纤维表面引入大量的酰胺基团;纤维表面形貌在点蚀和气动剥蚀效应的联合作用下不断粗化.","authors":[{"authorName":"曹海琳","id":"745c05e5-45fa-40bf-97f7-e6326bf27671","originalAuthorName":"曹海琳"},{"authorName":"黄玉东","id":"679ad356-0fcb-4a6f-888e-405ca8bcb501","originalAuthorName":"黄玉东"},{"authorName":"张志谦","id":"3cff4f95-06f5-473a-8eb5-693170cb6f9c","originalAuthorName":"张志谦"}],"doi":"10.3321/j.issn:1000-3851.2004.03.005","fpage":"22","id":"bcaba2bc-d986-426e-bcf1-5824eeaf35b7","issue":"3","journal":{"abbrevTitle":"FHCLXB","coverImgSrc":"journal/img/cover/FHCLXB.jpg","id":"26","issnPpub":"1000-3851","publisherId":"FHCLXB","title":"复合材料学报"},"keywords":[{"id":"0fa4178d-216c-476b-acdf-bdbdd9e9a312","keyword":"电化学处理","originalKeyword":"电化学处理"},{"id":"25f2807d-d9ff-437c-ab92-89a1db088b62","keyword":"PAN-基碳纤维","originalKeyword":"PAN-基碳纤维"},{"id":"84fe2e80-867b-4ed1-852f-a436faa0996c","keyword":"表面改性","originalKeyword":"表面改性"},{"id":"37e203a7-064f-4dbf-95bf-5391d70116bf","keyword":"NH4HCO3","originalKeyword":"NH4HCO3"}],"language":"zh","publisherId":"fhclxb200403005","title":"NH4HCO3溶液中PAN-基碳纤维电化学改性机理","volume":"21","year":"2004"},{"abstractinfo":"以NH4HCO3,ZrOCl2@9H2O和Y(NO3)3为原料,在乙醇溶液中通过共沉淀法制备2Y-TZP纳米粉体,并对其中的反应机理进行研究.在沉淀过程中,NH4HCO3和ZrOCl2通过两步反应生成(NH4)3ZrOH(CO3)3@2H2O沉淀.首先NH4HCO3和ZrOCl2反应生成Zr(OH)4,其后Zr(OH)4和NH4HCO3进一步反应生成(NH4)3ZrOH(CO3)3@2H2O.(NH4)3ZrOH(CO3)3@2H2O不稳定,在130℃即可分解生成ZrO2,并放出氨气、水和二氧化碳.沉淀产物经300和450℃煅烧后得到的2Y-TZP粉体颗粒尺寸细小,不存在大的硬团聚,具有良好的烧结性,在1225℃即可实现高度致密化.","authors":[{"authorName":"汤皎宁","id":"e6cfeb8c-96e7-4eab-accd-571b87a11750","originalAuthorName":"汤皎宁"},{"authorName":"靳喜海","id":"6b0455af-902d-4e42-b8ad-0fb2524394e7","originalAuthorName":"靳喜海"},{"authorName":"高濂","id":"65d55ca5-9ebe-4ead-b384-e44cd218ca71","originalAuthorName":"高濂"}],"doi":"10.3321/j.issn:1000-324X.2003.06.037","fpage":"1367","id":"c6f43a09-b108-4775-b780-b6c03a99973d","issue":"6","journal":{"abbrevTitle":"WJCLXB","coverImgSrc":"journal/img/cover/WJCLXB.jpg","id":"62","issnPpub":"1000-324X","publisherId":"WJCLXB","title":"无机材料学报"},"keywords":[{"id":"a30f1384-d544-4262-adb9-292a3c0b1231","keyword":"NH4HCO3","originalKeyword":"NH4HCO3"},{"id":"21265081-94cf-4130-8bcf-8e89f74555c0","keyword":"ZrO2","originalKeyword":"ZrO2"},{"id":"f08656da-3e52-40c9-9c48-df46c9ee701c","keyword":"(NH4)3ZrOH(CO3)3@2H2O","originalKeyword":"(NH4)3ZrOH(CO3)3@2H2O"},{"id":"3f3f5e8b-2971-4ae1-b713-e7934545ec64","keyword":"烧结","originalKeyword":"烧结"},{"id":"4066208e-4264-4ec8-a921-98aa16b29d43","keyword":"纳米粉体","originalKeyword":"纳米粉体"}],"language":"zh","publisherId":"wjclxb200306037","title":"以NH4HCO3为沉淀剂通过共沉淀法制备2Y-TZP纳米粉体","volume":"18","year":"2003"},{"abstractinfo":"NaAlO2溶液和CO2在低温下成胶,生成的沉淀为无定形氢氧化铝、拟薄水铝石或三水氧化铝;加入一定量的NH4HCO3,控制一定的时间、温度和压力,氢氧化铝与NH4HCO3作用生成片钠铝石NH4Al(OH)2CO3,经高温焙烧后可制得孔容为0.6~1.5 ml/g的大孔容氧化铝.","authors":[{"authorName":"杨清河","id":"46eb0a5c-0efa-44ab-a729-479865ae3bcd","originalAuthorName":"杨清河"},{"authorName":"李大东","id":"63ca14ab-49fe-4d65-8b9c-c3eeb277cf22","originalAuthorName":"李大东"},{"authorName":"庄福成","id":"90b97ba6-4562-407d-af39-2dd8affb0982","originalAuthorName":"庄福成"},{"authorName":"石亚华","id":"37f06a3b-506c-42d7-b969-ac0bcf400a40","originalAuthorName":"石亚华"},{"authorName":"康小洪","id":"94b6abd3-96ca-4415-8ea4-b9e9e5353e2c","originalAuthorName":"康小洪"}],"doi":"","fpage":"139","id":"c046e4c3-657e-400e-bbd8-87ab40b3cd2f","issue":"2","journal":{"abbrevTitle":"CHXB","coverImgSrc":"journal/img/cover/CHXB.jpg","id":"18","issnPpub":"0253-9837","publisherId":"CHXB","title":"催化学报 "},"keywords":[{"id":"b5e3d4e2-480e-49c6-b21a-b63c752176b2","keyword":"氢氧化铝","originalKeyword":"氢氧化铝"},{"id":"8a0ac34a-5a9c-415d-82d7-c5fd1c71e33c","keyword":"碳酸氢铵","originalKeyword":"碳酸氢铵"},{"id":"02a8d015-d2b3-4090-b263-3937a3c72070","keyword":"片钠铝石","originalKeyword":"片钠铝石"},{"id":"19b8d76d-bd65-41b3-9f8d-aaae5d0f2f56","keyword":"大孔氧化铝","originalKeyword":"大孔氧化铝"}],"language":"zh","publisherId":"cuihuaxb199902011","title":"NH4HCO3对氧化铝孔结构的影响","volume":"20","year":"1999"},{"abstractinfo":"本文通过对沉淀过程的pH值变化特征研究和沉淀物的组成分析,确定了NH4HCO3与RECl3的沉淀反应.研究了伴生金属离子Al3+、Fe2+、Mn2+、Ca2+、Mg2+随稀土的共沉淀行为,讨论了杂质离子对产品纯度的影响.","authors":[{"authorName":"李永绣","id":"83f4cbaf-482c-4345-af34-67d2abd6653f","originalAuthorName":"李永绣"},{"authorName":"何小彬","id":"c5611903-07a9-42ba-b90d-6baf09edf426","originalAuthorName":"何小彬"},{"authorName":"辜子英","id":"d0f9e149-68e4-4477-9d05-53293ad3e530","originalAuthorName":"辜子英"},{"authorName":"胡平贵","id":"d4467f4c-3606-4831-a283-d18133521766","originalAuthorName":"胡平贵"}],"doi":"10.3969/j.issn.1004-0277.1999.02.006","fpage":"19","id":"d2b1f953-f805-4d70-a469-9d1187b5197d","issue":"2","journal":{"abbrevTitle":"XT","coverImgSrc":"journal/img/cover/XT.jpg","id":"65","issnPpub":"1004-0277","publisherId":"XT","title":"稀土"},"keywords":[{"id":"562077db-fd52-4c2a-90be-94d37f804e66","keyword":"稀土","originalKeyword":"稀土"},{"id":"16047e3e-55bd-49a3-922a-fa50db3b18a9","keyword":"碳酸氢铵","originalKeyword":"碳酸氢铵"},{"id":"1dcfbf69-aced-4f35-82d9-bdc7c9f33eec","keyword":"沉淀反应","originalKeyword":"沉淀反应"}],"language":"zh","publisherId":"xitu199902006","title":"RECl3与NH4HCO3的沉淀反应及伴生杂质的共沉淀行为","volume":"20","year":"1999"},{"abstractinfo":"以Ce(NO3)3·6H2O和NH4HCO3为原料,采用化学沉淀法制得了平均长度84nm,直径15nm的CeO2棒状晶.利用XRD、TEM对CeO2粉体及其前驱体进行分析表征,发现CeO2晶粒继承了前驱体的棒状形貌.借助FTIR确定了前驱体的化学组成为Ce2O(CO3)2·H2O,从化学反应过程出发研究了CeO2棒状晶的具体形成过程.","authors":[{"authorName":"栾伟娜","id":"e1f3b3ad-68ce-45f5-9f96-56274dcd08ed","originalAuthorName":"栾伟娜"},{"authorName":"","id":"70c31eda-2f27-45f7-a3d7-af2edfe2aaf9","originalAuthorName":""},{"authorName":"张永成","id":"d31d9e82-bd3d-4a31-af5b-855d18400996","originalAuthorName":"张永成"},{"authorName":"","id":"bb6c77d0-36e3-4933-81c4-1e8e4fa03aaf","originalAuthorName":""},{"authorName":"夏临华","id":"e71dbf61-623a-456f-b5f6-777b376de7d0","originalAuthorName":"夏临华"}],"doi":"10.3969/j.issn.1004-0277.2008.04.011","fpage":"49","id":"dd8a6218-d742-436e-a13a-f82e38ff423b","issue":"4","journal":{"abbrevTitle":"XT","coverImgSrc":"journal/img/cover/XT.jpg","id":"65","issnPpub":"1004-0277","publisherId":"XT","title":"稀土"},"keywords":[{"id":"80af7c2d-3908-4525-9b45-6c060d611d20","keyword":"氧化铈","originalKeyword":"氧化铈"},{"id":"331d0b79-93cc-4372-909c-9f3893b5aaab","keyword":"前驱体","originalKeyword":"前驱体"},{"id":"6dabe95a-9586-43e4-bd66-411971f88b99","keyword":"棒状晶","originalKeyword":"棒状晶"}],"language":"zh","publisherId":"xitu200804011","title":"NH4HCO3沉淀法制备纳米CeO2棒状晶的研究","volume":"29","year":"2008"},{"abstractinfo":"以NH4HCO3,ZrOCl2·9H2O和Y(NO3)3为原料,在乙醇溶液中通过共沉淀法制备2Y-TZP纳米粉体,并对其中的反应机理进行研究.在沉淀过程中,NH4HCO3和ZrOCl2通过两步反应生成(NH4)3ZrOH(CO3)3·2H2O对沉淀.首先NH4HCO3和ZrOCl2反应生成Zr(OH)4,其后Zr(OH)4和NH4HCO3进一步反应生成(NH4)3ZrOH(CO3)3·2H2O.(NH4)3ZrOH(CO3)3·2H2O不稳定,在130℃即可分解生成ZrO2,并放出氨气、水和二氧化碳.沉淀产物经300和450℃煅烧后得到的ZY-TZP粉体颗粒尺寸细小,不存在大的硬团聚,具有良好的烧结性,在1225℃即可实现高度致密化.","authors":[{"authorName":"汤皎宁","id":"9ef46152-eb1d-43dd-ad5a-d0bcf4e7fb7e","originalAuthorName":"汤皎宁"},{"authorName":"靳喜海","id":"fe591002-a400-4c21-93dd-bf0461c60621","originalAuthorName":"靳喜海"},{"authorName":"高濂","id":"253f798d-1bd9-41f7-8ee3-56895d55b9d5","originalAuthorName":"高濂"}],"categoryName":"|","doi":"","fpage":"1367","id":"7fe3e1e5-55f5-483e-a818-0ad5bfb72f82","issue":"6","journal":{"abbrevTitle":"WJCLXB","coverImgSrc":"journal/img/cover/WJCLXB.jpg","id":"62","issnPpub":"1000-324X","publisherId":"WJCLXB","title":"无机材料学报"},"keywords":[{"id":"ac4dff7e-c3e9-4d35-835e-9f3703125f24","keyword":"NH4HCO3","originalKeyword":"NH4HCO3"},{"id":"1c39aaec-ef9b-4b15-939b-9dd93ff378e7","keyword":" ZrO2","originalKeyword":" ZrO2"},{"id":"fbe1bde7-1666-433e-8d07-1260d6adb019","keyword":" (NH4)3ZrOH(C03)3·2H2O","originalKeyword":" (NH4)3ZrOH(C03)3·2H2O"},{"id":"8af85fdd-38d0-4479-a1a6-10644396e608","keyword":" sintering and nanopowder","originalKeyword":" sintering and nanopowder"},{"id":"c154cbe2-8d04-49f8-a8f5-87e7dff6226a","keyword":"null","originalKeyword":"null"}],"language":"zh","publisherId":"1000-324X_2003_6_24","title":"以NH4HCO3为沉淀剂通过共沉淀法制备2Y-TZP纳米粉体","volume":"18","year":"2003"},{"abstractinfo":"磷灰石型硅酸镧是新型的氧离子导体。本研究采用柠檬酸-硝酸盐溶胶-凝胶法制备磷灰石型硅酸镧(La10Si5.8Mg0.2O26.8)纳米粉末,将其与NiO纳米粉末按4:6的质量比、并添加不同量的NH4HCO3造孔剂进行混合,通过在1400℃温度下烧结及在600℃氢气中还原制备Ni/La10Si5.8Mg0.2O26.8多孔复合阳极。采用XRD和SEM对样品进行了物相和表面微观形貌表征。采用阿基米德排水法和交流阻抗谱测定了样品的孔隙率和阳极片的室温电阻。实验结果表明,多孔复合阳极片不含微观裂纹,未还原陶瓷样品的平均热膨胀系数为10.7×10-6 K-1。随着NH4HCO3造孔剂加入量的增加, Ni、磷灰石型硅酸镧的晶粒尺寸及气孔尺寸减小,孔隙率增加,孔隙率为30%~45%;阳极电阻先降低后增加。综合考虑阳极片的物相、表面微观形貌、孔隙率和电阻,以加入30wt% NH4HCO3造孔剂所制得的阳极片最佳。","authors":[{"authorName":"项礼","id":"c69558bc-67be-4e48-8b37-6898222dc0c8","originalAuthorName":"项礼"},{"authorName":"丁小芳","id":"9c238af2-07d0-43c0-8b11-ded057ee8e5b","originalAuthorName":"丁小芳"}],"doi":"10.15541/jim20140021","fpage":"924","id":"d0eddba8-829a-4872-9e83-2e4df994d945","issue":"9","journal":{"abbrevTitle":"WJCLXB","coverImgSrc":"journal/img/cover/WJCLXB.jpg","id":"62","issnPpub":"1000-324X","publisherId":"WJCLXB","title":"无机材料学报"},"keywords":[{"id":"d014e698-bbba-4a25-b792-1f04800acf0c","keyword":"溶胶-凝胶","originalKeyword":"溶胶-凝胶"},{"id":"ccd365a8-7502-4362-b97f-d1ad8c84b10b","keyword":"磷灰石型硅酸镧","originalKeyword":"磷灰石型硅酸镧"},{"id":"bf7cc28c-cd62-41b6-a2dc-3ca7a713d4c6","keyword":"阳极","originalKeyword":"阳极"},{"id":"d8ef0bbf-c6b5-4335-b38f-0a6fd281bfca","keyword":"孔隙率","originalKeyword":"孔隙率"},{"id":"2f35391d-94da-49a3-94e5-3cd2f6ee4cf1","keyword":"固体氧化物燃料电池","originalKeyword":"固体氧化物燃料电池"}],"language":"zh","publisherId":"wjclxb201409005","title":"NH4HCO3用量对Ni/La10Si5.8Mg0.2O26.8阳极微观结构的影响","volume":"","year":"2014"},{"abstractinfo":"以NH4Al(SO4)2和NH4HCO3为主要原料,采用均相沉淀法制备纳米Al2O3前驱体NH4AlO(OH)HCO3(AACH),研究了滴定速率对其制备的影响.结果表明:将硫酸铝铵溶液滴入剧烈搅拌的碳酸氢铵溶液中,滴定速率不同,产物的组成和尺寸大小不同.滴定速率较低时,产物为晶化完全、纯净的AACH相,滴定速率较高时,产物中含有极少γ-AlOOH,而且滴定速率越低,所得前驱体尺寸越小.","authors":[{"authorName":"毕见强","id":"a3aa62d6-e3e2-4386-b642-ef87783b9a83","originalAuthorName":"毕见强"},{"authorName":"吴敬华","id":"66376ff0-a659-4173-be75-9493a0ef0d00","originalAuthorName":"吴敬华"},{"authorName":"孙康宁","id":"b8672e80-ac7f-4f44-86bc-933b802b2c26","originalAuthorName":"孙康宁"}],"doi":"","fpage":"636","id":"a1345d71-6f8e-45ad-9f63-01600e7b9334","issue":"4","journal":{"abbrevTitle":"GNCL","coverImgSrc":"journal/img/cover/GNCL.jpg","id":"33","issnPpub":"1001-9731","publisherId":"GNCL","title":"功能材料"},"keywords":[{"id":"53610802-f166-4b28-8db8-bb378061774b","keyword":"碳酸铝铵","originalKeyword":"碳酸铝铵"},{"id":"0645d8f5-01f1-4a38-84a2-098746c0bd51","keyword":"前驱体","originalKeyword":"前驱体"},{"id":"571a6f9a-ec7c-429a-ad11-b2fde7c44373","keyword":"滴定速率","originalKeyword":"滴定速率"},{"id":"35680b15-8851-41f9-87be-71b981bd9243","keyword":"纳米","originalKeyword":"纳米"}],"language":"zh","publisherId":"gncl200704037","title":"滴定速率对制备纳米NH4AlO(OH)HCO3的影响","volume":"38","year":"2007"},{"abstractinfo":"采用简便的溶剂热法合成粒径可控的Fe3O4磁性介孔/空心球(mesoporous/hollowspheresofmagne.tite,MHSM),粒径从80nm至400nm可调,通过调节反应时间、NH4HCO3与NH4Ac的摩尔比来控制MHSM的形貌、粒径以及介孔一空心的程度.采用XRD、SEM、TEM、VSM多种表征手段对MHSM进行了表征,结果表明NH4HCO3和NH4Ac的摩尔比对MHSM结构的形成、形貌、粒径起关键性的作用;NH4+的浓度对MHSM的粒径和磁性有决定性的影响;保持NH4HCO3和NH4Ac的摩尔比不变,延长反应时间对MHSM的结构与空腔生长有一定的影响。","authors":[{"authorName":"贺全国","id":"cbe39def-6c9a-4438-a2b5-d1bd622ff422","originalAuthorName":"贺全国"},{"authorName":"吴朝辉","id":"167fa939-de9d-4484-a3f3-49be4c011f02","originalAuthorName":"吴朝辉"},{"authorName":"黄春艳","id":"80f2adf8-8689-4f81-8983-46f59239e563","originalAuthorName":"黄春艳"}],"doi":"","fpage":"121","id":"6b3131ed-429b-4552-9377-739a5a00a7d7","issue":"5","journal":{"abbrevTitle":"CLKXYGY","coverImgSrc":"journal/img/cover/CLKXYGY.jpg","id":"14","issnPpub":"1005-0299","publisherId":"CLKXYGY","title":"材料科学与工艺"},"keywords":[{"id":"5a88d41d-2535-401e-83d8-59247c1b933d","keyword":"磁性Fe304","originalKeyword":"磁性Fe304"},{"id":"0aedd0de-a5a0-4b3b-8b6d-d8a9ba707689","keyword":"粒径可控","originalKeyword":"粒径可控"},{"id":"20273f60-d041-4476-84fe-beed17e69dbd","keyword":"溶剂热法","originalKeyword":"溶剂热法"},{"id":"a8646781-f258-48c8-80b2-6ae53e8200b6","keyword":"介孔空心球","originalKeyword":"介孔空心球"}],"language":"zh","publisherId":"clkxygy201205024","title":"溶剂热法合成粒径可控的Fe3O4磁性介孔/空心球","volume":"20","year":"2012"},{"abstractinfo":"探讨矿井水中SO2-4, HCO-3和Cl-对TiO2光催化降解矿井水化学需氧量-铬法(CODcr)性能的影响. 用阴离子树脂充分过滤掉矿井水中阴离子, 再用Na2SO4, NaHCO3和NaCl分别配制其在矿井水中单一存在的浓度, 使用自制的TiO2在紫外灯照射下光催化降解矿井水中CODcr. 当3种离子单独存在时, 它们均能使光催化CODcr的降解率下降, 影响大小依次是HCO-3>SO2-4>Cl-, 在Cl-为低浓度4.45 mmol·L-1对CODcr降解率有轻微促进作用. 采用 Langmuir-Hinshelwood机制分别研究了矿井水CODcr在SO2-4, HCO-3 和Cl-离子单独存时的光催化降解动力学, 降解模式符合准一级反应动力学方程. 在pH 7.9~8.7和辐照强度为紫外光辐照强度70 μW·cm-2条件下, 含HCO-3矿井水的Kr为31.45 mmol·L-1·min-1, Kb为0.56 L·mmol-1;含SO2-4矿井水的Kr为37.31 mmol·L-1·min-1, Kb为0.779 L·mmol-1;含Cl-矿井水的Kr为39.68 mmol·L-1·min-1, Kb为0.739 L·mmol-1.","authors":[{"authorName":"姚恩亲","id":"d2c43d0c-e580-4169-80c9-63b3ef911ccf","originalAuthorName":"姚恩亲"},{"authorName":"桂和荣","id":"2374740b-b0b4-459d-9826-fa397e20b4e5","originalAuthorName":"桂和荣"}],"doi":"10.3969/j.issn.0258-7076.2008.02.021","fpage":"224","id":"35d70e84-f274-46f9-8161-ee4df9b352fd","issue":"2","journal":{"abbrevTitle":"XYJS","coverImgSrc":"journal/img/cover/XYJS.jpg","id":"67","issnPpub":"0258-7076","publisherId":"XYJS","title":"稀有金属"},"keywords":[{"id":"b58e2cbc-675c-4754-8d1c-a7a61fd363d3","keyword":"矿井水","originalKeyword":"矿井水"},{"id":"419425b1-5674-4973-9363-1033a21ea8fd","keyword":"TiO2","originalKeyword":"TiO2"},{"id":"5b82fce8-0e1f-4a5b-9e5c-f65978d4452a","keyword":"CODcr","originalKeyword":"CODcr"},{"id":"22ffb87f-dc67-46e2-8d41-18e7d33e18a2","keyword":"SO2-4","originalKeyword":"SO2-4"},{"id":"e52802bf-a51c-41f1-873d-3627267f4cda","keyword":"HCO-3","originalKeyword":"HCO-3"},{"id":"21a4392f-c690-4f0c-a7ae-a8165956941d","keyword":"Cl-","originalKeyword":"Cl-"},{"id":"ff8aa044-807b-4b89-bd11-9293977df488","keyword":"动力学","originalKeyword":"动力学"}],"language":"zh","publisherId":"xyjs200802021","title":"UV/TiO2降解矿井水CODcr中SO2-4,HCO-3和Cl-的影响及动力学研究","volume":"32","year":"2008"}],"totalpage":7916,"totalrecord":79153}