{"currentpage":1,"firstResult":0,"maxresult":10,"pagecode":5,"pageindex":{"endPagecode":5,"startPagecode":1},"records":[{"abstractinfo":"采用快速化学液相气化渗透法制备了2D-C/C复合材料;观察了沉积过程中,预制体内部已沉积C/C复合材料截面轮廓的变化;解释了不同沉积阶段致密化区域分布特征的变化规律;分析了化学液相气化渗透过程中热解碳的沉积特征.研究发现:随着沉积的进行,已沉积区域的外侧面始终以一种类似圆弧层的形式逐渐向外侧推进,已沉积区域的截面轮廓形状由\"月牙形\"逐渐变为\"面包\"形;纤维表面热解碳涂层不断增厚,且沉积温度越高,纤维表面涂层增厚越快.","authors":[{"authorName":"孙万昌","id":"cfff2c98-f487-42e9-ac5d-94833fa43ebc","originalAuthorName":"孙万昌"},{"authorName":"李贺军","id":"fde28c09-c904-408c-9335-87b52a2db195","originalAuthorName":"李贺军"},{"authorName":"黄勇","id":"e0962fee-4b79-4c66-81ba-087470db7e82","originalAuthorName":"黄勇"},{"authorName":"白瑞成","id":"27a73dda-6d0f-4caa-a022-9c2932b18b31","originalAuthorName":"白瑞成"},{"authorName":"张守阳","id":"bdbd7132-0939-4ddb-b940-039cdf584842","originalAuthorName":"张守阳"}],"doi":"","fpage":"504","id":"677798a8-9d55-45af-9e4f-4d167d0ad480","issue":"z1","journal":{"abbrevTitle":"XYJSCLYGC","coverImgSrc":"journal/img/cover/XYJSCLYGC.jpg","id":"69","issnPpub":"1002-185X","publisherId":"XYJSCLYGC","title":"稀有金属材料与工程"},"keywords":[{"id":"40f8e762-ce72-49c9-9cb9-35c64e4ec74b","keyword":"C/C复合材料","originalKeyword":"C/C复合材料"},{"id":"4219da11-8d2e-49e1-a3d6-21514ae2c41c","keyword":"快速致密化","originalKeyword":"快速致密化"},{"id":"8aff1075-bd16-4c45-bb86-7fb34af368c3","keyword":"热解碳","originalKeyword":"热解碳"},{"id":"ba02910f-098f-4cee-8a26-19003fdb05df","keyword":"沉积过程","originalKeyword":"沉积过程"}],"language":"zh","publisherId":"xyjsclygc2005z1136","title":"化学液相气化渗透沉积过程特征","volume":"34","year":"2005"},{"abstractinfo":"建立了按激光光斑直径逐点沉积热力耦合的热应力有限元分析模型.316L不锈钢直薄壁件沉积过程的热应力模拟结果显示,拉应力区出现在基板与沉积部分界面处(界面拉应力区)和沉积部分顶部(顶部拉应力区);拉应力区的位置随激光束的运动不断变化.实验证明,沉积过程中的开裂分别发生在沉积部分顶部(顶部开裂)和基板与沉积部分界面处的边缘部位(边缘开裂).顶部开裂出现在顶部拉应力区,边缘开裂出现在界面拉应力区中拉应力最大的边缘部位.有限元模拟结果很好地解释了实验中的开裂现象.","authors":[{"authorName":"石力开","id":"c12940b5-4314-4e4a-9701-6b5b1e1dc9c7","originalAuthorName":"石力开"},{"authorName":"高士友","id":"c0323295-71b9-483e-872a-7c880e9ed8a5","originalAuthorName":"高士友"},{"authorName":"席明哲","id":"c2d75d88-d1f8-48a7-94a5-cc2b58f3679d","originalAuthorName":"席明哲"},{"authorName":"纪宏志","id":"469f2467-78c1-4c0c-bb08-9380c40c8deb","originalAuthorName":"纪宏志"},{"authorName":"张永忠","id":"b9896d4c-b6ed-47c8-ad89-cc820f83b68c","originalAuthorName":"张永忠"},{"authorName":"杜宝亮","id":"0a4a5bc1-d5f3-423a-a833-716bf25cfd3d","originalAuthorName":"杜宝亮"}],"doi":"10.3321/j.issn:0412-1961.2006.05.002","fpage":"454","id":"870f3faa-7aaa-422c-b582-994913940f4d","issue":"5","journal":{"abbrevTitle":"JSXB","coverImgSrc":"journal/img/cover/JSXB.jpg","id":"48","issnPpub":"0412-1961","publisherId":"JSXB","title":"金属学报"},"keywords":[{"id":"ee3be160-d9d5-40de-8481-387356499616","keyword":"激光直接沉积","originalKeyword":"激光直接沉积"},{"id":"ffe083b1-9852-4825-9b07-c75dc1736715","keyword":"金属直薄壁件","originalKeyword":"金属直薄壁件"},{"id":"6ba16626-5a58-4535-abed-9728b9f6060d","keyword":"有限元模拟","originalKeyword":"有限元模拟"},{"id":"b47cb36a-33fe-417f-9bd9-99511b8faca5","keyword":"热应力","originalKeyword":"热应力"},{"id":"6d97eb0a-e1dc-47ce-b89e-4846f7732e2e","keyword":"开裂","originalKeyword":"开裂"},{"id":"e7934342-99e7-478e-8f61-8fea1591147f","keyword":"沉积过程","originalKeyword":"沉积过程"}],"language":"zh","publisherId":"jsxb200605002","title":"金属直薄壁件激光直接沉积过程的有限元模拟Ⅱ.沉积过程中热应力场的模拟","volume":"42","year":"2006"},{"abstractinfo":"通过SEM观察Ni-Cu-P合金沉积过程的形貌,提出了Ni-Cu-P非晶态合金镀层形核与长大过程沉积模型.结果表明:初期沉积过程具有明显的择优倾向和不均匀性,原子并非以单个原子的形式沉积于基体表面,而是还原后的原子在固-液界面处首先形成原子团,然后在基体表面的高能量区域优先沉积,并开始形核且以不规则形态长大;在施镀后期,随着P含量的不断增加,镀层形貌逐渐由不规则形态变为规则胞状形态,直至形成光滑平整的非晶态镀层.","authors":[{"authorName":"王憨鹰","id":"c263add5-1391-49f9-9862-4b6b46e23b6a","originalAuthorName":"王憨鹰"},{"authorName":"陈焕铭","id":"b21dda0b-2b0b-4f6c-b196-55d3d24b6ccb","originalAuthorName":"陈焕铭"},{"authorName":"徐靖","id":"160b314a-ba77-4945-b6fb-83248838c998","originalAuthorName":"徐靖"},{"authorName":"孙安","id":"d8b40bb0-aadd-4873-addd-05c1586e6cf8","originalAuthorName":"孙安"}],"doi":"10.3969/j.issn.1001-3660.2008.06.004","fpage":"12","id":"be658a88-4495-49ee-8c2b-7f9d46b79dd5","issue":"6","journal":{"abbrevTitle":"BMJS","coverImgSrc":"journal/img/cover/BMJS.jpg","id":"3","issnPpub":"1001-3660","publisherId":"BMJS","title":"表面技术 "},"keywords":[{"id":"f6fb5a41-6de8-4f8c-ac19-f88580d6af80","keyword":"化学镀","originalKeyword":"化学镀"},{"id":"c6755db7-567d-46fe-b190-6c9a448b528f","keyword":"Ni-Cu-P合金","originalKeyword":"Ni-Cu-P合金"},{"id":"30afc355-8b4d-4282-83a4-e6a102b3787e","keyword":"沉积过程","originalKeyword":"沉积过程"},{"id":"f2c35fda-65b2-4141-919d-8e53ca7b9ae7","keyword":"优先沉积","originalKeyword":"优先沉积"},{"id":"57c5a704-4b0c-48a1-891f-2f4ff9e02a95","keyword":"非晶态镀层","originalKeyword":"非晶态镀层"}],"language":"zh","publisherId":"bmjs200806004","title":"NdFeB磁性材料化学镀Ni-Cu-P合金沉积过程分析","volume":"37","year":"2008"},{"abstractinfo":"建立了模拟直薄壁件逐点沉积过程中温度场的有限元模型,用等价导热系数和焓值法处理了固-液耦合热传导问题和固液混合区的焓.模拟结果真实地反映了沉积316L不锈钢直薄壁件的温度场特征.通过对模拟结果的分析得出,在高温阶段(700℃以上)熔池的平均冷却速率达到103℃/s数量级,在240℃以下的冷却速率仅为10℃/s数量级.基板的温度变化经历温度上升、温度平稳、温度下降3个阶段;在温度下降阶段,基板中的热传导对熔池冷却速率影响很小.有限元模拟结果与已有文献的实验测量数据吻合很好.","authors":[{"authorName":"石力开","id":"3fb66c20-2886-415c-bb3b-343961a3d4c6","originalAuthorName":"石力开"},{"authorName":"高士友","id":"a471e48b-52e5-4397-ac10-9a88bd70d265","originalAuthorName":"高士友"},{"authorName":"席明哲","id":"6368fc31-3de3-4c2c-927b-760871d5bd12","originalAuthorName":"席明哲"},{"authorName":"纪宏志","id":"80f8caa3-fc6d-49fe-a5f6-cb1d473f67c8","originalAuthorName":"纪宏志"},{"authorName":"张永忠","id":"2e07fe7f-db3f-4a0b-8fe8-0e4a41d2126d","originalAuthorName":"张永忠"},{"authorName":"杜宝亮","id":"3cc9c729-ba11-4421-8d90-23f4d90a78ec","originalAuthorName":"杜宝亮"}],"doi":"10.3321/j.issn:0412-1961.2006.05.001","fpage":"449","id":"acc79835-72a1-4a4d-b9fe-5b9c6e1be75b","issue":"5","journal":{"abbrevTitle":"JSXB","coverImgSrc":"journal/img/cover/JSXB.jpg","id":"48","issnPpub":"0412-1961","publisherId":"JSXB","title":"金属学报"},"keywords":[{"id":"5ddd84b0-1c00-43bf-817a-1e7b747e8088","keyword":"激光直接沉积","originalKeyword":"激光直接沉积"},{"id":"c93c34bc-364f-4bdd-8f32-a4968691ae25","keyword":"金属直薄壁件","originalKeyword":"金属直薄壁件"},{"id":"fc2cc7b3-0888-4f68-9017-4f8cd3fb32da","keyword":"温度场","originalKeyword":"温度场"},{"id":"56314315-95fb-4734-a04c-fbd5d0bdbb78","keyword":"有限元模拟","originalKeyword":"有限元模拟"},{"id":"8d7be83b-bccb-4f87-96c3-73fb3073c17f","keyword":"沉积过程","originalKeyword":"沉积过程"}],"language":"zh","publisherId":"jsxb200605001","title":"金属直薄壁件激光直接沉积过程的有限元模拟Ⅰ.沉积过程中温度场的模拟","volume":"42","year":"2006"},{"abstractinfo":"采用电刷镀技术制得了纳米复合镀层,并用SEM和TEM对其表面形貌、断面组织和微观结构进行了表征,探讨了镀层的生长过程.结果表明,纳米复合镀层表面形貌比较细腻平整,断面组织细小,纳米颗粒均匀弥散分布在基质金属中且结合紧密.镀层的沉积过程可分为三个阶段:均匀生长阶段,微凸体形成阶段和树枝状晶形成阶段.","authors":[{"authorName":"蒋斌","id":"4bccf70b-e917-4614-b549-ed8c73d4ded4","originalAuthorName":"蒋斌"},{"authorName":"徐滨士","id":"0e597ee7-b5aa-4da2-81c3-97a7e2c0a9cd","originalAuthorName":"徐滨士"},{"authorName":"董世运","id":"561b9c31-1d00-4d97-bf89-0ae348df2883","originalAuthorName":"董世运"},{"authorName":"欧忠文","id":"ab9ccc75-a03f-411b-a1fd-f1bc1de085d2","originalAuthorName":"欧忠文"}],"doi":"10.3969/j.issn.1001-3660.2005.03.005","fpage":"16","id":"d7a0fd56-3968-43e0-ac46-89b5ea7f913b","issue":"3","journal":{"abbrevTitle":"BMJS","coverImgSrc":"journal/img/cover/BMJS.jpg","id":"3","issnPpub":"1001-3660","publisherId":"BMJS","title":"表面技术 "},"keywords":[{"id":"3de4f5c8-3b6c-4af8-b935-6d710b682b7c","keyword":"电刷镀","originalKeyword":"电刷镀"},{"id":"729a2a08-b42e-4469-9150-0d31420e73a8","keyword":"纳米复合镀层","originalKeyword":"纳米复合镀层"},{"id":"93bb62f8-ad00-4b86-b0e1-f2c159a02c04","keyword":"组织结构","originalKeyword":"组织结构"},{"id":"2762debb-7c2d-4e12-b4b2-a5e6b38abbd1","keyword":"沉积过程","originalKeyword":"沉积过程"}],"language":"zh","publisherId":"bmjs200503005","title":"电刷镀纳米颗粒复合镀层的组织与沉积过程","volume":"34","year":"2005"},{"abstractinfo":"通过对Au纳米粒子在Au基体上沉积过程的分子动力学模拟,再现了冷喷涂中Au纳米粒子在Au基体上沉积过程以及粒子和基体表层的形貌变化;在撞击过程中,基体的局部区域有熔化现象,通过计算粒子原子进入基体表面层的数量及粒子与基体间的最终接触面积,探讨了影响喷涂粒子沉积过程的主要因素.","authors":[{"authorName":"高虹","id":"86d1e405-3777-4786-8e01-c626c22be75f","originalAuthorName":"高虹"},{"authorName":"赵良举","id":"18bf0882-f918-4ea7-9588-4806ada2e6cf","originalAuthorName":"赵良举"},{"authorName":"曾丹苓","id":"bf8f0d3d-1aaf-4ea5-86e8-a5591cef637b","originalAuthorName":"曾丹苓"},{"authorName":"高丽娟","id":"e208bc64-b621-45c8-9b03-76033a39cde7","originalAuthorName":"高丽娟"}],"doi":"10.3321/j.issn:0412-1961.2006.11.008","fpage":"1158","id":"a57bf06b-8a76-4edf-ad9a-6c20dc66326b","issue":"11","journal":{"abbrevTitle":"JSXB","coverImgSrc":"journal/img/cover/JSXB.jpg","id":"48","issnPpub":"0412-1961","publisherId":"JSXB","title":"金属学报"},"keywords":[{"id":"b17e82bf-810e-4304-b501-8e7bed99dbfb","keyword":"冷喷涂","originalKeyword":"冷喷涂"},{"id":"998bdb54-db41-44dd-8d4d-aa1402431e44","keyword":"分子动力学模拟","originalKeyword":"分子动力学模拟"},{"id":"37f0ea6b-559a-4f53-ae1a-73d56edb14fc","keyword":"纳米粒子","originalKeyword":"纳米粒子"},{"id":"3bffe4e9-afda-4ee1-8cda-81e2d395ed95","keyword":"沉积过程","originalKeyword":"沉积过程"}],"language":"zh","publisherId":"jsxb200611008","title":"冷喷涂Au纳米粒子在金属表面沉积过程的分子动力学模拟","volume":"42","year":"2006"},{"abstractinfo":"改善固体氧化物燃料电池金属连接体用AISI 430不锈钢的抗氧化性能尤为重要.采用酸性镀液脉冲电镀的方法,在AISI 430不锈钢表面制备出微纳米结构的Co-Ni合金镀层,研究了脉冲电镀工艺及镀层的生长机制.用XRD对微纳米结构镀层的物相进行分析,用SEM观察了不同电镀工艺条件下镀层的形貌.结果表明:在Co-Ni合金共沉积形成过程中,Co2+,Ni2+在阴极发生异常共沉积,形成了Co/Ni异质形核;随着晶体的长大,部分晶体优先快速长大,形成较大的晶粒,大小晶粒混合布满整个表面,主要通过阶梯方式生长形成了Co-Ni合金.","authors":[{"authorName":"程付鹏","id":"e3504e79-71be-4cf8-9543-b469dcf35a44","originalAuthorName":"程付鹏"},{"authorName":"曹志颖","id":"40971f89-a716-43c1-9e5a-f115679dc1ac","originalAuthorName":"曹志颖"},{"authorName":"文钟晟","id":"7257fe62-17c5-41a7-bf62-cae39b2bca03","originalAuthorName":"文钟晟"},{"authorName":"刘玲娟","id":"ceb8c8df-688c-45fb-afd5-751afa172ae0","originalAuthorName":"刘玲娟"},{"authorName":"荆波","id":"d866a4e3-6df9-4fbd-a170-a151f9e5baf8","originalAuthorName":"荆波"},{"authorName":"孙俊才","id":"18ef45d9-2c5d-445e-9bd4-652483696d2f","originalAuthorName":"孙俊才"}],"doi":"","fpage":"11","id":"87dddaa4-eac8-471a-bf3f-152b0c1cccf7","issue":"7","journal":{"abbrevTitle":"CLBH","coverImgSrc":"journal/img/cover/CLBH.jpg","id":"7","issnPpub":"1001-1560","publisherId":"CLBH","title":"材料保护"},"keywords":[{"id":"d71a86e9-eb56-4b19-825c-5db4375b2e97","keyword":"脉冲电镀Co-Ni合金","originalKeyword":"脉冲电镀Co-Ni合金"},{"id":"7e996501-c1a2-4613-8a1b-26c8452a72a3","keyword":"沉积过程","originalKeyword":"沉积过程"},{"id":"0e86afb3-60c6-41ae-8db0-365f7f47a7d1","keyword":"生长形貌变化","originalKeyword":"生长形貌变化"},{"id":"e7191e6a-1ad5-4aa5-8c16-c176738ddf6b","keyword":"AISI 430不锈钢","originalKeyword":"AISI 430不锈钢"}],"language":"zh","publisherId":"clbh201507003","title":"AISI430不锈钢表面Co-Ni合金脉冲电沉积过程","volume":"48","year":"2015"},{"abstractinfo":"用葡萄糖作为还原剂制备银包铜粉.在还原法镀银过程中,主盐溶液以不同的工艺添加可得到不同微观形貌和表观颜色的银包铜粉,用扫描电镜、能谱仪对银包铜粉进行表征,并用滴定法计算不同添加工艺制备的银包铜粉的含银量,确定了较优的主盐添加工艺;同时,通过在施镀过程中阶段性取粉观察,对银包铜粉镀层的沉积过程进行了分析.","authors":[{"authorName":"赵少凡","id":"82364c6a-bf89-4f3c-95ce-ce17f1b1e1ab","originalAuthorName":"赵少凡"},{"authorName":"夏志东","id":"56e11598-93e9-4125-a9ea-6165ef4f5954","originalAuthorName":"夏志东"},{"authorName":"周虎","id":"a66f14dd-bb85-4511-93c5-0bb0c0e7da90","originalAuthorName":"周虎"},{"authorName":"刘小黑","id":"7d615f01-bf86-4a48-8377-4004f6e390c7","originalAuthorName":"刘小黑"}],"doi":"","fpage":"535","id":"60ca4160-1f36-435c-835e-14ee92f85bd9","issue":"3","journal":{"abbrevTitle":"XYJSCLYGC","coverImgSrc":"journal/img/cover/XYJSCLYGC.jpg","id":"69","issnPpub":"1002-185X","publisherId":"XYJSCLYGC","title":"稀有金属材料与工程"},"keywords":[{"id":"0f3c37bd-3f8a-46aa-88b3-363f41037e4c","keyword":"银包铜粉","originalKeyword":"银包铜粉"},{"id":"6176f104-e7d5-41a3-8ce0-b19529a8c4f8","keyword":"还原法","originalKeyword":"还原法"},{"id":"7f3fe85f-6a67-41b9-9f98-10517c339e75","keyword":"添加工艺","originalKeyword":"添加工艺"},{"id":"685d7cf0-73d5-459e-b38a-e1a496b8fbae","keyword":"沉积过程","originalKeyword":"沉积过程"}],"language":"zh","publisherId":"xyjsclygc201203034","title":"还原法制备银包铜粉主盐添加工艺及镀层沉积过程研究","volume":"41","year":"2012"},{"abstractinfo":"通过电化学测量技术研究了丙烯基硫脲对低磷化学镀镍过程的影响.结果表明,丙烯基硫脲在低浓度时(<5mg/L),通过电子转移机理加速了Ni2+的还原过程,表现出明显的加速作用;在高浓度时(>5mg/L),由于电极表面较厚吸附层的存在,阻碍了H2PO-2在催化表面的氧化反应,表现为对沉积反应的抑制作用.","authors":[{"authorName":"张永忠","id":"f11968b4-16ab-41b8-9c38-69c97540c390","originalAuthorName":"张永忠"}],"doi":"10.3969/j.issn.1002-6495.1999.02.010","fpage":"122","id":"6cbaeb40-5700-442f-9961-a8dabe6ae272","issue":"2","journal":{"abbrevTitle":"FSXB","coverImgSrc":"journal/img/cover/腐蚀学报封面.jpg","id":"24","issnPpub":"2667-2669","publisherId":"FSXB","title":"腐蚀学报(英文)"},"keywords":[{"id":"6400dffd-c14d-4e8a-bd7a-d7a5ace8969c","keyword":"丙烯基硫脲","originalKeyword":"丙烯基硫脲"},{"id":"a1c5cd82-718e-4d73-a251-de0188d6fa12","keyword":"化学镀镍","originalKeyword":"化学镀镍"},{"id":"2a1fe66a-34d2-454e-9080-ff2f20ca2f1d","keyword":"沉积过程","originalKeyword":"沉积过程"}],"language":"zh","publisherId":"fskxyfhjs199902010","title":"丙烯基硫脲对低磷化学镀镍沉积过程的影响","volume":"11","year":"1999"},{"abstractinfo":"通过对不同时间序列(0.5、1、10、20、40、60 min)镀层的深入研究,提出Ni-Cu-P非晶态合会镀层形核与长大过程沉积模型,并对不同时间序列非晶态合金镀层的形貌和结构研究表明:在施镀初期,Ni、Cu原子团优先沉积于基体表面能量较高的部位,并开始形核且以不规则形态长大;在施镀后期,随着P含量的不断增加,镀层形貌逐渐由不规则形态变为规则胞状形态,直至形成光滑平整的非晶念镀层.","authors":[{"authorName":"王憨鹰","id":"2e2bee25-2d7c-4dc3-af43-8b5ec7c3ba17","originalAuthorName":"王憨鹰"},{"authorName":"陈焕铭","id":"4beca57b-5079-45a2-9c54-7c2c15020b7c","originalAuthorName":"陈焕铭"},{"authorName":"徐靖","id":"00235bfa-1199-4e72-8553-4752bf9d9726","originalAuthorName":"徐靖"},{"authorName":"孙安","id":"3d2be250-ab1a-43c8-9447-26d73ae20767","originalAuthorName":"孙安"}],"doi":"10.3969/j.issn.1004-244X.2009.01.014","fpage":"50","id":"1fd1a083-ca31-46ce-99d2-52198ec30c7c","issue":"1","journal":{"abbrevTitle":"BQCLKXYGC","coverImgSrc":"journal/img/cover/BQCLKXYGC.jpg","id":"4","issnPpub":"1004-244X","publisherId":"BQCLKXYGC","title":"兵器材料科学与工程 "},"keywords":[{"id":"af3bd89c-a5d5-47ef-983d-c3ca8980f750","keyword":"化学镀","originalKeyword":"化学镀"},{"id":"30f0a929-2bcb-4de9-8107-be5fa4157c57","keyword":"Ni-Cu-P合金","originalKeyword":"Ni-Cu-P合金"},{"id":"d26d1953-89b2-418d-b185-a93bb7454c5f","keyword":"沉积过程","originalKeyword":"沉积过程"},{"id":"fb5fa7f7-84e4-44d3-ab9f-b92603b10d2d","keyword":"优先沉积","originalKeyword":"优先沉积"},{"id":"2e1c57cb-691c-48ab-842a-dae01ed6d1a5","keyword":"非晶态镀层","originalKeyword":"非晶态镀层"}],"language":"zh","publisherId":"bqclkxygc200901014","title":"NdFeB磁性材料化学镀Ni-Cu-P合金沉积机理研究","volume":"32","year":"2009"}],"totalpage":5022,"totalrecord":50212}