{"currentpage":1,"firstResult":0,"maxresult":10,"pagecode":5,"pageindex":{"endPagecode":5,"startPagecode":1},"records":[{"abstractinfo":"对化石能源依赖所造成的能源安全和环境污染等问题限制了人类社会的可持续发展。 Li-CO2电池能量密度高、原材料成本低廉且结构简单,因而被认为是开发和利用可再生清洁能源的有力技术,在住宅能量存储、电动汽车驱动和智能电网等领域具备良好的应用前景。此外, CO2等温室气体的大量排放是全球变暖的主要原因, Li-CO2电池放电时可将空气中的 CO2还原固定,生成的材料可用作燃料和化工原料,在资源利用化上提供了新途径。 Li-CO2电池是建立在锂-空气电池的基础上。相比大气中的其他成分, H2O与 CO2对该电池的影响很大。防水膜可以减少水的影响;而在放电过程中, CO2的存在会生成 Li2CO3, Li2CO3是可以分解的。由此可见, CO2在可充放的锂电池中作为正极活性成分储能,从而被利用起来。目前 Li-CO2电池至少面临三个问题:(1)电池充放电的机理尚不完全清楚,并且以 O2和 CO2混合气为活性气体的机理与以纯 CO2为活性气体的机理是有差别的, Li2CO3的生成与分解的机制仍在探索中;(2)电解液的稳定性;(3)寻找高效的正极催化剂材料。
  本文介绍了 Li-CO2电池的发展历程,讨论了 Li-CO2电池的充放电机理、电解液的影响以及正极催化材料的选取等。综述了活性气体为纯 CO2和 CO2-O2混合气时机理的差别,以及 CO2/O2混合比对电池性能的影响。选取电解液应考虑其粘度和介电性。高效能的正极催化材料大多具有高导电性、多孔结构和大的比表面积等特点。而温度也是影响 Li-CO2电池性能的因素之一。虽然 Li-CO2电池的概念相对较新,但可实现 CO2在能源储存与转化领域中的应用,并为 Li-O2电池向锂空气电池飞跃提供了重要参考。本文以如何提高正极材料的催化性能和 Li2CO3的生成和分解机理为重点,总结了正极材料所具有的导电性、比表面积、特殊结构等特点,以及相关机理。","authors":[{"authorName":"李翔","id":"f3176768-907a-49f6-8e76-8ff7658f4983","originalAuthorName":"李翔"},{"authorName":"杨思勰","id":"18be33cc-76f5-4860-aabe-a887b844ab9d","originalAuthorName":"杨思勰"},{"authorName":"冯宁宁","id":"f07e680f-0bab-401c-ad33-1923649988a3","originalAuthorName":"冯宁宁"},{"authorName":"何平","id":"87efc8e2-22d3-4086-a694-dd5bc79b148b","originalAuthorName":"何平"},{"authorName":"周豪慎","id":"4a0a5f89-854c-4d9e-b95b-7b79ad76b178","originalAuthorName":"周豪慎"}],"doi":"10.1016/S1872-2067(15)61125-1","fpage":"1016","id":"666ccc4c-fd27-4ec1-a3da-0552caec05e2","issue":"7","journal":{"abbrevTitle":"CHXB","coverImgSrc":"journal/img/cover/CHXB.jpg","id":"18","issnPpub":"0253-9837","publisherId":"CHXB","title":"催化学报 "},"keywords":[{"id":"f559a71d-c982-4f79-b559-7dc27102b03a","keyword":"锂-二氧化碳电池","originalKeyword":"锂-二氧化碳电池"},{"id":"82bdc731-32f0-4ae9-94f2-c1454b6647bb","keyword":"正极反应机理","originalKeyword":"正极反应机理"},{"id":"3f9028bb-27ec-4e83-a956-d06b397505ca","keyword":"催化剂设计","originalKeyword":"催化剂设计"},{"id":"18ee3cd3-fd20-4e38-b014-09c77158f0d2","keyword":"","originalKeyword":"固碳"}],"language":"zh","publisherId":"cuihuaxb201607007","title":"Li?CO2电池机理、催化剂和性能研究进展","volume":"37","year":"2016"},{"abstractinfo":"提出了高炉铁水双辊连铸薄带十高温气反应脱碳,生产钢带的全新工艺流程.实验以高合金板带为研究对象,在Ar-H2-H2O气氛下可控气氛管式炉内,利用高温气反应脱碳机制,探索铁合金固态下脱碳而铁基不氧化的可行性,确定可控气氛下脱碳的温度和气氛条件范围.实验结果表明:气氛条件对铁的氧化有显著影响,当水浴温度不大于60℃或气体流量不大于300 mL/min时,脱碳后基体中不存在铁的氧化物;当水浴温度达到70℃或气体流量达到450mL/min时,脱碳后基体中出现铁的氧化物,此时由于铁氧化的出现降低了脱碳效果.","authors":[{"authorName":"洪陆阔","id":"7c1c7890-12f5-40e5-ba57-fa00b49ae3a0","originalAuthorName":"洪陆阔"},{"authorName":"艾立群","id":"87b0a786-d782-4959-bec7-c80488b20d7d","originalAuthorName":"艾立群"},{"authorName":"程荣","id":"0d26782e-3bb0-4d95-9539-aa2884264e3d","originalAuthorName":"程荣"},{"authorName":"孙彩娇","id":"0e6d8087-8472-4d5e-933c-065a1a021560","originalAuthorName":"孙彩娇"},{"authorName":"赵定国","id":"9759b3c0-ea5e-4886-b8e7-db1f4add3ea9","originalAuthorName":"赵定国"},{"authorName":"付强","id":"4d876c04-fc2d-4cb3-9657-f857830d5c3f","originalAuthorName":"付强"}],"doi":"10.13228/j.boyuan.issn1001-0963.20150127","fpage":"36","id":"776e4702-b0b4-41d0-935e-c9785b832353","issue":"5","journal":{"abbrevTitle":"GTYJXB","coverImgSrc":"journal/img/cover/GTYJXB.jpg","id":"30","issnPpub":"1001-0963","publisherId":"GTYJXB","title":"钢铁研究学报"},"keywords":[{"id":"06415dd9-0b10-4b9e-99a7-51f873ea3469","keyword":"气反应","originalKeyword":"气固反应"},{"id":"7ee5bd9c-0ab7-4aa5-aa9b-799d24d9069c","keyword":"脱碳","originalKeyword":"脱碳"},{"id":"9b04dc31-441b-460a-a52a-5c3f314cb01d","keyword":"Fe-C合金","originalKeyword":"Fe-C合金"},{"id":"04e733a5-0877-4bb4-b8cb-0e3ffc365159","keyword":"薄带","originalKeyword":"薄带"}],"language":"zh","publisherId":"gtyjxb201605007","title":"铁合金薄带气反应脱碳工艺","volume":"28","year":"2016"},{"abstractinfo":"提出了高炉铁水双辊连铸薄带+高温气反应脱碳生产钢带的全新工艺流程。试验以Ar-H2-H2O为脱碳气氛,在可控气氛管式炉内对Fe-C合金薄带进行脱碳。通过正交试验方法,研究了不同水浴温度(40~60℃)、脱碳时间(5~50 min)和脱碳温度(920~1140℃)对脱碳效果的影响。研究结果表明,升高脱碳温度、水浴温度和延长脱碳时间均有利于合金薄带的脱碳,其中脱碳温度的影响最为显著,其次为脱碳时间,水浴温度对脱碳效果的影响最小。质量分数为4.05%,厚度分别为2.0、1.0、0.5 mm的薄带,在水浴温度为60℃时,1140℃下固态脱碳25 min,薄带平均质量分数分别降至1.12%、0.41%和0.017%,证明了合金在可控气氛下通过气反应脱碳生产中低碳钢带技术上可行。","authors":[{"authorName":"洪陆阔","id":"070a2764-eca6-4d4e-b77d-5bd606f68bba","originalAuthorName":"洪陆阔"},{"authorName":"艾立群","id":"4fdc729d-dad0-453c-9eee-29f62615f29c","originalAuthorName":"艾立群"},{"authorName":"程荣","id":"23c115db-bbd2-4a8e-a7a1-05848c19f23c","originalAuthorName":"程荣"},{"authorName":"孙彩轿","id":"f5d9fe23-b760-436e-abdd-8f2b3d1b3c87","originalAuthorName":"孙彩轿"},{"authorName":"隋艳龙","id":"129c497f-1943-48ef-be13-6a73af3c4be8","originalAuthorName":"隋艳龙"}],"doi":"10.13228/j.boyuan.issn0449-749x.20150157","fpage":"27","id":"fa2688b3-0aca-4f02-a3e5-fa993c78cef1","issue":"3","journal":{"abbrevTitle":"GT","coverImgSrc":"journal/img/cover/GT.jpg","id":"27","issnPpub":"0449-749X","publisherId":"GT","title":"钢铁"},"keywords":[{"id":"c475e082-650a-44a5-9a3a-a4d7fbe9a56f","keyword":"气反应","originalKeyword":"气固反应"},{"id":"36a954ec-b543-43f1-8f14-d69b5fc3cf47","keyword":"脱碳","originalKeyword":"脱碳"},{"id":"3b7651a8-8b63-4e1c-bdf8-67d22eb5f65e","keyword":"Fe-C合金","originalKeyword":"Fe-C合金"},{"id":"4f1073d1-394c-47dd-83df-4fe82e02076b","keyword":"薄带","originalKeyword":"薄带"}],"language":"zh","publisherId":"gt201603005","title":"铁合金薄带气反应脱碳试验","volume":"51","year":"2016"},{"abstractinfo":"借助三维取向分布函数探讨了高纯超低深冲钢板的含量对再结晶γ织构的影响,分析了与再结晶γ织构及其中的{111}<112>和{111}<110>织构之间的关系","authors":[{"authorName":"赵骧","id":"2269fa4b-ed1d-48b5-b6a5-7bd8f96be5cc","originalAuthorName":"赵骧"}],"categoryName":"|","doi":"","fpage":"262","id":"b949d4e6-50e8-40cb-9fff-b97717edccce","issue":"18","journal":{"abbrevTitle":"JSXB","coverImgSrc":"journal/img/cover/JSXB.jpg","id":"48","issnPpub":"0412-1961","publisherId":"JSXB","title":"金属学报"},"keywords":[{"id":"d4ffe0b7-bc14-4491-a4b3-3e7a59a2ecca","keyword":"含量","originalKeyword":"固溶碳含量"},{"id":"b05c6dab-d684-45d4-8ee6-15d86eb9ad30","keyword":" recrystallization texture","originalKeyword":" recrystallization texture"},{"id":"933b5693-6804-4e3f-9f1a-89fbc82f29e9","keyword":" deep drawing steel sheet","originalKeyword":" deep drawing steel sheet"}],"language":"zh","publisherId":"0412-1961_1995_18_1","title":"高纯超低深冲钢板的含量对再结晶γ织构的影响","volume":"31","year":"1995"},{"abstractinfo":"以Ni∶Cr=3∶1的双金属层作为催化剂,用C2H2为碳源气体利用化学气相沉积(CVD)法,在不同的温度下制备纳米管.扫描电子显微镜(SEM)和透射电子显微镜(TEM)研究制备产物发现:当制备温度高于900℃时,没有纳米管生成,制备温度在700~800℃之间纳米管中填充有一些离散分布的金属Ni纳米线,制备温度在650℃有纳米管生成,但是纳米管中没有发现纳米线的填充.通过高分辨透射电子显微镜(HRTEM)分析发现,纳米线是以液态或是粘滞液态填充进纳米管.根据实验结果,提出了一个在本实验条件下纳米线填充进纳米管的气-液/-V- L/S -S(vapor- liquid/solid-solid)模型,这个模型能解释一些传统的V-L-S(vapor- liquid -solid)模型不能解释的实验现象.","authors":[{"authorName":"吴萍","id":"0a980ce2-6f3d-4424-b153-699cb7bcb736","originalAuthorName":"吴萍"},{"authorName":"陈蓓","id":"f9f85462-d5c5-4392-9d90-3f9f68780aea","originalAuthorName":"陈蓓"},{"authorName":"邹兴权","id":"5c402bb7-9d83-432a-a6e1-4e95d107e416","originalAuthorName":"邹兴权"},{"authorName":"李强","id":"15293bdc-7f3f-4e39-a981-6cb4574c54b2","originalAuthorName":"李强"},{"authorName":"张丹莉","id":"1316d3f5-9344-4aae-bb5c-eafd4b7501ba","originalAuthorName":"张丹莉"},{"authorName":"肖潭","id":"8780f85c-2f5d-485b-b6bc-01cf4d1b6a80","originalAuthorName":"肖潭"}],"doi":"","fpage":"1893","id":"3f6fce37-0c83-402f-819f-c653bb0164a2","issue":"11","journal":{"abbrevTitle":"GNCL","coverImgSrc":"journal/img/cover/GNCL.jpg","id":"33","issnPpub":"1001-9731","publisherId":"GNCL","title":"功能材料"},"keywords":[{"id":"26bccfb1-1f53-4c7a-9564-9b3aff80f5c9","keyword":"纳米管","originalKeyword":"纳米碳管"},{"id":"0f305f82-b2e9-47e2-b6eb-b27589aa9a2b","keyword":"纳米线","originalKeyword":"纳米线"},{"id":"84987245-6f07-4597-a95b-71a5cb889302","keyword":"V-L/S-S模型","originalKeyword":"V-L/S-S模型"}],"language":"zh","publisherId":"gncl200711043","title":"纳米管中离散分布的金属Ni纳米线气-液/-填充模型","volume":"38","year":"2007"},{"abstractinfo":"以热还原法为原理,采用Fe2O3、Li2CO3、NH3H2PO4和碳黑为原料,以一定计量比和顺序混合,经过球磨、干燥、造粒、预烧、烧成等几道工序,制备出黑色的LiFePO4/C粉末.利用化学分析、XRD、SEM等手段研究了工艺流程对合成产物晶体结构、表面形貌的影响.利用合成材料组装电池,通过充放电试验测试电化学性能.结果表明,以0.1 C速率充放电,首次充放电容量在150 mAh/g.从长远看来,这种低成本,工艺简单,绿色无污染的合成方法很具有工业实用化生产价值.","authors":[{"authorName":"乐斌","id":"6745659a-52c2-4f15-9a85-54e26188bdd9","originalAuthorName":"乐斌"},{"authorName":"唐子龙","id":"d267fd14-9fc8-4f6d-8e6c-d0b7a0fc3878","originalAuthorName":"唐子龙"},{"authorName":"张中太","id":"f540a641-fd79-4ab3-a44b-4698379d40e2","originalAuthorName":"张中太"}],"doi":"","fpage":"177","id":"dbf9445d-f1bb-444a-8307-15daf33b6bb6","issue":"z1","journal":{"abbrevTitle":"XYJSCLYGC","coverImgSrc":"journal/img/cover/XYJSCLYGC.jpg","id":"69","issnPpub":"1002-185X","publisherId":"XYJSCLYGC","title":"稀有金属材料与工程"},"keywords":[{"id":"b580853c-4a68-4d82-bdc6-bd12b4b2123a","keyword":"锂离子电池","originalKeyword":"锂离子电池"},{"id":"f9d89270-bb4e-442c-860c-10589f63f091","keyword":"正极材料","originalKeyword":"正极材料"},{"id":"076d0731-2b3b-4967-b917-0dace6a3cce6","keyword":"LiFePO4","originalKeyword":"LiFePO4"},{"id":"43d2926c-7189-4fd8-9024-3c2171e1185a","keyword":"热还原","originalKeyword":"碳热还原"}],"language":"zh","publisherId":"xyjsclygc2007z1053","title":"LiFePO4热合成法研究","volume":"36","year":"2007"},{"abstractinfo":"采用光学显微镜、EBSD测试技术和三维原子探针分别对超低烘烤硬化钢的微观组织、织构以及溶元素进行分析.结果表明,超低烘烤硬化钢经过750 ~ 810℃退火后,退火组织均为等轴状的铁素体组织,退火织构主要为{111}有利织构.随着退火温度的增加,其晶粒尺寸和{111}织构的强度都不断增大.烘烤硬化钢板经过退火后和磷元素在晶界等缺陷处发生了不同程度的偏聚.通过三维原子探针相应的软件计算得出,溶在钢中的含量随着退火温度的增加而增大.","authors":[{"authorName":"阎琦","id":"55e90d96-fccf-4c17-8f38-f22a23661cbf","originalAuthorName":"阎琦"},{"authorName":"史文","id":"ae114619-6c81-4713-8a54-9cbda95f7a9a","originalAuthorName":"史文"},{"authorName":"黄健","id":"53e7a684-acd5-4067-b72d-bce907352d4b","originalAuthorName":"黄健"},{"authorName":"王华","id":"abe58631-bcd5-4520-bad3-fd07e25b9972","originalAuthorName":"王华"},{"authorName":"李麟","id":"3270fc58-8932-4627-9055-21248e16133d","originalAuthorName":"李麟"}],"doi":"","fpage":"71","id":"d74679ce-aed4-40b8-afc6-a617ce3ebb07","issue":"z1","journal":{"abbrevTitle":"CLRCLXB","coverImgSrc":"journal/img/cover/CLRCLXB.jpg","id":"15","issnPpub":"1009-6264","publisherId":"CLRCLXB","title":"材料热处理学报"},"keywords":[{"id":"a351323b-6eca-45ac-8bb4-5a0c2705324b","keyword":"超低烘烤硬化钢","originalKeyword":"超低碳烘烤硬化钢"},{"id":"e299c6cd-e39c-4edc-abf6-3eb53b887e30","keyword":"退火温度","originalKeyword":"退火温度"},{"id":"f859b8b2-1f61-436c-ae45-d8892be5356c","keyword":"织构","originalKeyword":"织构"},{"id":"79acf936-e5aa-4c9e-bbf0-845fdf2075cf","keyword":"溶元素","originalKeyword":"固溶元素"}],"language":"zh","publisherId":"jsrclxb2011z1018","title":"退火温度对超低烘烤硬化钢织构和溶元素影响","volume":"32","year":"2011"},{"abstractinfo":"为了研究1 mm铁合金薄带气-反应脱碳动力学以及探索不同温度对薄带脱碳效果的影响.以初始质量分数为4.2%、厚度为1 mm的铁合金薄带为研究对象,在气体流量为400 mL/min、pH2O/pH2为0.85的Ar-H2-H2O混合气氛条件下,以高温气-反应形式开展脱碳试验研究.结果表明,提高脱碳温度可以明显提高脱碳效果,在1413 K温度条件下脱碳30 min可以将脱至0.12%.宏观脱碳反应近似为表观一级反应,脱碳反应表观活化能为157.9 kJ/mol.脱碳反应初期主要受控于表面化学反应,后期在薄带内部的扩散成为主要限制性环节.","authors":[{"authorName":"李亚强","id":"7db7736f-83e9-4806-9b20-1f7fdc7f30ef","originalAuthorName":"李亚强"},{"authorName":"艾立群","id":"726221b6-7225-4154-b119-40c210683eff","originalAuthorName":"艾立群"},{"authorName":"李强","id":"76e7e06d-55a8-4600-9f1a-596dc3834f6c","originalAuthorName":"李强"},{"authorName":"程荣","id":"c75ac238-9a95-47d6-9267-2bfc9d6ae556","originalAuthorName":"程荣"},{"authorName":"陈鹏飞","id":"32373a9c-5af1-440d-87e2-dabaeb2f1a32","originalAuthorName":"陈鹏飞"},{"authorName":"刘新亮","id":"ffda0dd2-c32f-49d2-b774-cbc6560ffb0a","originalAuthorName":"刘新亮"}],"doi":"10.13228/j.boyuan.issn0449-749x.20160316","fpage":"19","id":"4df7a768-926e-44e2-8834-89ab94064353","issue":"5","journal":{"abbrevTitle":"GT","coverImgSrc":"journal/img/cover/GT.jpg","id":"27","issnPpub":"0449-749X","publisherId":"GT","title":"钢铁"},"keywords":[{"id":"8172e60b-f176-42fb-81ac-79f85f4d3a7e","keyword":"铁合金","originalKeyword":"铁碳合金"},{"id":"a51891e0-248b-4bd2-b4ba-de424c67fa8b","keyword":"薄带","originalKeyword":"薄带"},{"id":"0acbcb95-1f5c-4bea-93a5-5558188f9f15","keyword":"气-反应","originalKeyword":"气-固反应"},{"id":"7bf26563-f75b-49e7-a510-fe13b230f2a5","keyword":"脱碳","originalKeyword":"脱碳"},{"id":"cf600305-73d0-4662-becf-f3fa0cac443e","keyword":"表观活化能","originalKeyword":"表观活化能"}],"language":"zh","publisherId":"gt201705004","title":"1mm铁合金薄带气-反应脱碳试验","volume":"52","year":"2017"},{"abstractinfo":"借助X射线衍射仪和内耗仪分别研究了低铝镇静软质镀锡钢板在热轧、冷轧、连退、平整和镀锡过程中的织构和含量变化。结果表明:随着生产工序的进行,{001}〈110〉织构由强变弱,而7纤维织构,尤其是{111}〈112〉织构由弱变强;热轧板经冷轧后的溶量明显降低,而退火加热又使含量略有回升,平整又导致含量进一步降低,镀锡过程的加热再次造成含量略增。","authors":[{"authorName":"穆海玲","id":"1f87a01d-a164-45ba-a574-a9e3369e4ba1","originalAuthorName":"穆海玲"},{"authorName":"孙祖春","id":"32587f7c-ec57-4dd2-afa9-a66835aad245","originalAuthorName":"孙祖春"},{"authorName":"王浩","id":"d4755a7d-ebb6-4d9d-a2b3-fc585ee5692d","originalAuthorName":"王浩"},{"authorName":"赵骧","id":"df5b1fa5-d7a6-4e92-9c08-d04e26cd5724","originalAuthorName":"赵骧"}],"doi":"","fpage":"23","id":"ec7b4479-259f-48e1-a7fe-82315f8c0e25","issue":"11","journal":{"abbrevTitle":"JXGCCL","coverImgSrc":"journal/img/cover/JXGCCL.jpg","id":"45","issnPpub":"1000-3738","publisherId":"JXGCCL","title":"机械工程材料"},"keywords":[{"id":"d7b1faa6-5b2b-452f-aec4-0b64ca7de5d5","keyword":"镀锡板","originalKeyword":"镀锡板"},{"id":"8ba10b39-d1d8-4443-8bfb-1866f296b4e1","keyword":"织构","originalKeyword":"织构"},{"id":"4310df62-44e7-4610-8b61-1a20998077f1","keyword":"内耗","originalKeyword":"内耗"},{"id":"6ba15360-e371-4156-a269-0c997359869f","keyword":"含量","originalKeyword":"固溶碳含量"}],"language":"zh","publisherId":"jxgccl201211006","title":"低铝镇静软质镀锡钢板在生产过程中织构和含量的变化","volume":"36","year":"2012"},{"abstractinfo":"综合文献报道及在研制超高碳钢中所观察到的实验现象,讨论了珠光体在变形中发生渗碳体溶解以及在变形铁基体中非平衡溶的机理,并着重讨论了在高温变形下的情况.","authors":[{"authorName":"林一坚","id":"b2e13de6-8a7a-459d-a89c-b85f367ab1b7","originalAuthorName":"林一坚"}],"doi":"10.3969/j.issn.1001-7208.2010.02.001","fpage":"1","id":"9efcdd7c-84f2-4755-bb63-ae41b3d6d945","issue":"2","journal":{"abbrevTitle":"SHJS","coverImgSrc":"journal/img/cover/SHJS.jpg","id":"59","issnPpub":"1001-7208","publisherId":"SHJS","title":"上海金属"},"keywords":[{"id":"1d83ef2a-2bd9-431f-bdb6-947d069ff2b3","keyword":"超高碳钢","originalKeyword":"超高碳钢"},{"id":"ac65feb1-8322-45c6-8788-e9ba58552f02","keyword":"渗碳体溶解","originalKeyword":"渗碳体溶解"},{"id":"0643693f-49a4-48c2-9932-1570720bd3cf","keyword":"变形珠光体","originalKeyword":"变形珠光体"},{"id":"f703565e-f1cf-4be2-8f8d-96d8b0880cd3","keyword":"非平衡溶","originalKeyword":"非平衡固溶"}],"language":"zh","publisherId":"shjs201002001","title":"在变形铁基体中的非平衡溶","volume":"32","year":"2010"}],"totalpage":1955,"totalrecord":19548}