{"currentpage":1,"firstResult":0,"maxresult":10,"pagecode":5,"pageindex":{"endPagecode":5,"startPagecode":1},"records":[{"abstractinfo":"Ce在镧系元素中是具有特殊性质的一员,其根源在于它的混合价特性.在Ce2 Fe14 B化合物中,Ce表现出强烈的+4价倾向,不仅自身4 f电子缺失无法贡献稀土离子磁性,而且离子半径过小导致Fe-Fe间距缩减,使Ce2 Fe14 B居里温度和饱和磁极化强度都以较大的幅度地下降.另外,在Ce-Fe-B三元合金中,Ce倾向于生成Laves相CeFe2,而非富稀土低熔点晶界浸润相,不能在烧结磁体中产生使主相晶粒退磁耦合的矫顽力机制,烧结Ce-Fe-B难以实现高矫顽力.尽管如此,Ce2 Fe14 B仍具有优良的内禀磁性,通过快淬方法可制备出性能适中的(Ce,Nd)-Fe-B各向同性磁粉,而通过贫Ce富Nd和贫Nd富Ce双合金或双主相烧结的方法,用富Nd相承担分割主相晶粒提高矫顽力的功能,也实现了高性价比(Ce,Nd)-Fe-B烧结磁体的商品化.综合阐述了元素Ce影响钕铁硼磁体内禀磁性和矫顽力方面的研究工作.","authors":[{"authorName":"饶晓雷","id":"bb9c6f93-5c94-4ab1-bffd-08f668377606","originalAuthorName":"饶晓雷"},{"authorName":"钮萼","id":"a30f86da-2b99-44ca-b670-af6ebd12eb55","originalAuthorName":"钮萼"},{"authorName":"胡伯平","id":"092bd729-d937-4c79-9b09-9678f442c99c","originalAuthorName":"胡伯平"}],"doi":"10.7502/j.issn.1674-3962.2017.01.09","fpage":"63","id":"22fe659c-0973-4e14-9b69-ee9587715bd3","issue":"1","journal":{"abbrevTitle":"ZGCLJZ","coverImgSrc":"journal/img/cover/中国材料进展.jpg","id":"80","issnPpub":"1674-3962","publisherId":"ZGCLJZ","title":"中国材料进展"},"keywords":[{"id":"f84950a7-38fc-4842-87fa-c742560ac529","keyword":"Ce混合价","originalKeyword":"Ce混合价"},{"id":"7f781573-6949-40cc-851a-53cca8799c00","keyword":"CeFe2","originalKeyword":"CeFe2"},{"id":"847f9836-ac9d-4a17-aa3a-2ed0d94b1db4","keyword":"钕铁硼","originalKeyword":"钕铁硼"},{"id":"fb539cfe-2c4d-4bbc-84cf-1ad31a0c5c90","keyword":"烧结","originalKeyword":"烧结"},{"id":"7791f8e2-0634-4929-ad9c-4fa525c4969f","keyword":"快淬","originalKeyword":"快淬"},{"id":"a285f12a-3ff6-4cb3-be3d-bc75337921a5","keyword":"双合金","originalKeyword":"双合金"},{"id":"bcb4e0c3-4dd6-4f86-a848-5a5568bdcea6","keyword":"双主相","originalKeyword":"双主相"}],"language":"zh","publisherId":"zgcljz201701009","title":"Ce对烧结钕铁硼磁体永磁性的影响","volume":"36","year":"2017"},{"abstractinfo":"New iron-based rare-earth CeFe13-xSix (2.4 less than or equal to x less than or equal to 2.6) intermetallic compounds which crystallized in the NaZn13-type structure with Fm3c(O-h(6)) space-group symmetry have been found. The ac susceptibility and the magnetization curve measurements are reported. The substitution of silicon for iron leads to an increase of the Curie temperature and a reduction of the unit-cell volume. The saturation magnetic moment decreases from 15.7 mu(beta)/f.u. to 13.4 mu(beta)/f.u. with x=2.4-2.6. (C) 1995 American Institute of Physics.","authors":[],"categoryName":"|","doi":"","fpage":"2866","id":"477459c4-71e1-408b-8d52-29ea405df46f","issue":"4","journal":{"abbrevTitle":"JOAP","id":"7dcf8a89-0513-40ee-be2d-759941dcef7e","issnPpub":"0021-8979","publisherId":"JOAP","title":"Journal of Applied Physics"},"keywords":[],"language":"en","publisherId":"0021-8979_1995_4_1","title":"STRUCTURE AND MAGNETIC-PROPERTIES OF CEFE13-XSIX COMPOUNDS","volume":"78","year":"1995"},{"abstractinfo":"通过X射线衍射和磁性测量等手段对金属间化合物CeFe10.5Si2.5的晶体结构、磁性以及磁熵变进行了研究. 结果表明,经过对铸态样品进行12 h退火所得的金属间化合物CeFe10.5Si2.5晶体为单相立方NaZn13型结构; 在1.5 T外磁场下居里温度TC~206 K附近的最大等温磁熵变为10.7 J·kg-1·K-1,并随着外磁场的增大而迅速增大; 从Arrott曲线中可以看出,在此化合物中没有明显的巡游电子变磁转变特性,但从低磁场下的热磁曲线可知,磁化强度在居里温度处发生陡峭的变化,这应该是该化合物获得大磁熵变的原因.","authors":[{"authorName":"徐超","id":"e9aa880d-c61b-4157-b693-2c6ab522be0c","originalAuthorName":"徐超"},{"authorName":"刘学东","id":"598e6752-5712-4238-996c-13957365bd97","originalAuthorName":"刘学东"},{"authorName":"李晓伟","id":"d6d29151-1153-4e24-a863-6b14e7d921cb","originalAuthorName":"李晓伟"},{"authorName":"李国栋","id":"3ff2e271-9a91-4e5e-9d27-0a45acbed3a9","originalAuthorName":"李国栋"}],"doi":"","fpage":"178","id":"13066ae7-f23c-493e-aca3-7746709a4be8","issue":"2","journal":{"abbrevTitle":"ZGXTXB","coverImgSrc":"journal/img/cover/ZGXTXB.jpg","id":"86","issnPpub":"1000-4343","publisherId":"ZGXTXB","title":"中国稀土学报"},"keywords":[{"id":"6ee831f3-5cea-4770-b3bc-9ab98030e62c","keyword":"等温磁熵变","originalKeyword":"等温磁熵变"},{"id":"3b41026d-3655-43f6-bf19-453b15e0c148","keyword":"NaZn13-型金属间化合物","originalKeyword":"NaZn13-型金属间化合物"},{"id":"ef442bdf-a89f-4c24-90c8-1fe34568a481","keyword":"巡游电子变磁转变","originalKeyword":"巡游电子变磁转变"},{"id":"26821b8a-aaa1-447f-a3d1-b3ad708abc0a","keyword":"磁致冷材料","originalKeyword":"磁致冷材料"},{"id":"d2cb9d03-87e9-4b61-8ac7-bb002e9c84cc","keyword":"稀土","originalKeyword":"稀土"}],"language":"zh","publisherId":"zgxtxb200802010","title":"CeFe10.5Si2.5金属间化合物晶体结构、磁性和磁熵变特性研究","volume":"26","year":"2008"},{"abstractinfo":"采用电弧熔炼法制备了稀土Ce掺杂的 Fe83 Ga17 Ce0.8铸态合金,然后对其进行快淬处理,获得Fe83 Ga17 Ce0.8快淬态合金,最后对 Fe83 Ga17 Ce0.8快淬态合金在1223 K下进行退火热处理5 h.用 X 射线衍射(XRD)、扫描电镜及能谱仪(SEM/EDS)和磁致伸缩测试方法研究了快淬和退火对合金结构和磁致伸缩性能的影响.结果表明,Fe83 Ga17 Ce0.8铸态合金由 bcc结构的Fe(Ga)相和少量的 CeFe2第二相组成.Fe83 Ga17 Ce0.8快淬态合金除了含有大量的 Fe(Ga)相和少量的CeFe2相外,合金中还出现了非对称 DO3结构的 Fe3 Ga相.Fe83 Ga17 Ce0.8快淬态合金经退火热处理后,合金中的CeFe2相转化为贫稀土 Ce2 Fe17相.在外磁场为557 kA/m时,Fe83 Ga17 Ce0.8快淬态合金的磁致伸缩系数(3.82×10-4)明显大于铸态合金(3.56×10-4)和退火态合金(1.82×10-4)的磁致伸缩系数.","authors":[{"authorName":"姚占全","id":"9e32113c-0abe-4fe8-b1d8-7f3e88882d96","originalAuthorName":"姚占全"},{"authorName":"田晓","id":"73696041-f052-457c-95b8-2f7c4d2962b7","originalAuthorName":"田晓"},{"authorName":"伟伟","id":"3daed1d4-0025-43f9-864a-4f9f5e692e6c","originalAuthorName":"伟伟"}],"doi":"10.3969/j.issn.1001-9731.2015.01.008","fpage":"1041","id":"2fa88cf8-1e44-4cbc-b678-406701dd4d11","issue":"1","journal":{"abbrevTitle":"GNCL","coverImgSrc":"journal/img/cover/GNCL.jpg","id":"33","issnPpub":"1001-9731","publisherId":"GNCL","title":"功能材料"},"keywords":[{"id":"f2fce36e-9dd6-4b31-9353-0767df21fa9d","keyword":"磁致伸缩","originalKeyword":"磁致伸缩"},{"id":"facf5eed-fb37-4f7d-9372-956e5de73a8e","keyword":"Fe-Ga合金","originalKeyword":"Fe-Ga合金"},{"id":"a8ffa78d-eb82-407c-a5e1-270aaed53268","keyword":"快淬","originalKeyword":"快淬"},{"id":"34b1a54d-9ad1-4e75-954f-40cd29bd5d47","keyword":"退火","originalKeyword":"退火"}],"language":"zh","publisherId":"gncl201501008","title":"快淬和退火对Fe83 Ga17 Ce0.8合金结构和磁致伸缩性能的影响?","volume":"","year":"2015"},{"abstractinfo":"利用X射线衍射仪和透射电镜研究了稀土对40Cr钢离子渗氮化合物层结构的影响.结果表明:与普通离子渗氮相比较,稀土催渗离子渗氮化合物层中γ'相的相对含量多,且有稀土化合物CeFe2;稀土催渗离子渗氮的γ'相中存在着较多的位错环、层错和孪晶等晶体缺陷,稀土能促进晶体缺陷的形成.","authors":[{"authorName":"陈方生","id":"74c77fb2-d5ec-49aa-ac99-291cab377a51","originalAuthorName":"陈方生"},{"authorName":"刘玉先","id":"a030a13a-dce7-4260-8373-ff4eefd97be4","originalAuthorName":"刘玉先"},{"authorName":"徐军","id":"c6958812-8a81-4a91-a81a-c5cc0e37ec9c","originalAuthorName":"徐军"},{"authorName":"萧莉美","id":"14d45ceb-ab44-4da4-9f7c-72f28675c890","originalAuthorName":"萧莉美"}],"doi":"10.3969/j.issn.1004-0277.2000.03.010","fpage":"35","id":"ec9f865c-4ed3-4684-ae4f-d39721e80ce2","issue":"3","journal":{"abbrevTitle":"XT","coverImgSrc":"journal/img/cover/XT.jpg","id":"65","issnPpub":"1004-0277","publisherId":"XT","title":"稀土"},"keywords":[{"id":"23b5e33d-a549-4b4f-ad6a-def415a59608","keyword":"40Cr","originalKeyword":"40Cr"},{"id":"776ee8b0-f0c2-483c-875e-799a08f4eabb","keyword":"稀土","originalKeyword":"稀土"},{"id":"7b97b80c-fd09-4682-929f-20ae93b69c68","keyword":"离子渗氮","originalKeyword":"离子渗氮"},{"id":"e0b00697-09fc-4614-a738-82f04d9b217e","keyword":"化合物层","originalKeyword":"化合物层"},{"id":"c122c8d9-fb6e-48f2-ae5c-c10cce5d267b","keyword":"结构","originalKeyword":"结构"}],"language":"zh","publisherId":"xitu200003010","title":"稀土对40Cr钢离子渗氮层结构的影响","volume":"21","year":"2000"},{"abstractinfo":"采用电弧熔炼法制备了稀土Ce掺杂的Fe83Ga17Ce0.8铸态合金,然后对其进行快淬处理,获得快淬态Fe83Ga17Ce0.8合金,最后对快淬态Fe83Ga17Ce0.8合金在不同温度(850℃、950℃和1050℃)下进行退火处理5h.用X射线衍射(XRD)、扫描电镜及能谱仪(SEM/EDS)和磁致伸缩测试方法研究了退火温度对合金结构和磁致伸缩性能的影响.结果表明,快淬态Fe83Ga17Ce0.88合金经退火处理后,合金中的CeFe2相转化为贫稀土Ce2Fe17相.随退火温度的升高,合金的磁致伸缩系数绝对值先减小后大幅度增大.退火温度为1050℃时,合金的磁致伸缩系数达最大(在外磁场为398 kA/m时,磁致伸缩系数为656×10-6).磁致伸缩系数的增大与该合金中形成较多的Ce2Fe17相以及合金中A2相沿[100]方向择优取向有关.","authors":[{"authorName":"姚占全","id":"e46fd8c3-c294-4e49-9f8b-949937bd0136","originalAuthorName":"姚占全"},{"authorName":"田晓","id":"72435f9a-201e-4e82-b2b8-6b7f4af44fc3","originalAuthorName":"田晓"},{"authorName":"伟伟","id":"619b7b21-5efe-4b38-a377-ddcd20a7b6a8","originalAuthorName":"伟伟"}],"doi":"10.11896/j.issn.1005-023X.2015.02.026","fpage":"119","id":"8bbeb6fb-cc4c-42cb-9d58-51b5da836b6c","issue":"2","journal":{"abbrevTitle":"CLDB","coverImgSrc":"journal/img/cover/CLDB.jpg","id":"8","issnPpub":"1005-023X","publisherId":"CLDB","title":"材料导报"},"keywords":[{"id":"16b8dae8-7504-4a7a-b889-58c9e1de1603","keyword":"磁致伸缩","originalKeyword":"磁致伸缩"},{"id":"7f65f903-a321-4b16-82a4-b579cccc68c3","keyword":"Fe-Ga合金","originalKeyword":"Fe-Ga合金"},{"id":"68b7a264-6e36-4edc-abd3-9ebd1a647797","keyword":"快淬","originalKeyword":"快淬"},{"id":"7ebd7682-fdfb-4c60-8c82-770f51c952dd","keyword":"退火处理","originalKeyword":"退火处理"}],"language":"zh","publisherId":"cldb201502026","title":"热处理对快淬Fe83Ga17Ce0.8合金结构和磁致伸缩性能的影响","volume":"29","year":"2015"},{"abstractinfo":"为了改善Fe-Ga合金的磁致伸缩性能,采用真空非自耗电弧炉制备了Fe83Ga17Cex(x=0.0,0.2,0.4,0.6,0.8,1.0)合金,用X射线衍射仪(XRD)和扫描电镜及能谱仪(SEM/EDS)分析了合金的微结构,用电阻应变法测量了合金的磁致伸缩性能.结果表明:Fe83Ga17合金由单一的bcc结构A2相组成.而添加稀土Ce后,除x=0.2合金外,Fe83Ga17Cex合金主要由bcc结构的A2相和CeFe2第二相组成.此外,Fe83Ga17合金的微观组织是晶粒粗大的等轴晶,而Fe83Ga17Ceo.8合金的微观组织是晶粒细小的柱状晶.与Fe83Ga17对照合金相比,除x=0.2合金的磁致伸缩系数略小于对照合金外,其他添加稀土Ce后的合金样品磁致伸缩系数均明显增加.添加稀土Ce后,Fe83Ga17Cex合金的磁致伸缩系数随稀土Ce含量的增加呈现出先增加后减小的变化趋势,x=0.8合金的磁致伸缩系数最大,在557 kA/m外加磁场下,磁致伸缩系数达到356×10-6.","authors":[{"authorName":"姚占全","id":"b13645ee-7ed4-4d31-8f47-f940b1636de1","originalAuthorName":"姚占全"},{"authorName":"赵增祺","id":"9cddccac-933f-41e6-8c7b-9fdd5b866333","originalAuthorName":"赵增祺"},{"authorName":"江丽萍","id":"c1d467c7-fc42-4228-bd52-f73679f88fdc","originalAuthorName":"江丽萍"},{"authorName":"郝宏波","id":"a0c810d4-b64d-4b5a-8a96-d4491702f1b5","originalAuthorName":"郝宏波"},{"authorName":"吴双霞","id":"697aca84-f375-4bb5-ade6-f627dd2f297e","originalAuthorName":"吴双霞"},{"authorName":"张光睿","id":"dd3c49ce-bfdb-4b07-bfe7-b20c4dade0ad","originalAuthorName":"张光睿"},{"authorName":"杨建东","id":"739bf4d0-b58b-4b97-b0b2-0fd60f5bdec6","originalAuthorName":"杨建东"}],"doi":"10.3724/SP.J.1037.2012.00498","fpage":"87","id":"d9c6bdc2-d867-4615-ace7-b59184d4f6ec","issue":"1","journal":{"abbrevTitle":"JSXB","coverImgSrc":"journal/img/cover/JSXB.jpg","id":"48","issnPpub":"0412-1961","publisherId":"JSXB","title":"金属学报"},"keywords":[{"id":"c94bec92-65a5-4992-aa2f-aa628d1ed38f","keyword":"Fe-Ga合金","originalKeyword":"Fe-Ga合金"},{"id":"00d2ebde-fba6-435c-9f33-d825f6997139","keyword":"磁致伸缩","originalKeyword":"磁致伸缩"},{"id":"723ce27c-ce5f-47a7-a135-c514ebbc1e69","keyword":"稀土Ce添加","originalKeyword":"稀土Ce添加"},{"id":"f865d17d-0394-4672-84c6-aa41d68b15e9","keyword":"微结构","originalKeyword":"微结构"}],"language":"zh","publisherId":"jsxb201301012","title":"稀土Ce添加对Fe83Ga17合金微结构和磁致伸缩性能的影响","volume":"49","year":"2013"},{"abstractinfo":"The BaB2O4-BaF2-2NaF-NaB2O4 reciprocal system has been investigated by combination of experimental measurements with theoretical calculation. The Na2B2O4-2NaF binary and Na2B2O4-BaF2 pseudo-binary phase diagrams are measured by means of DTA and X-ray diffraction. The thermodynamic functions for all sub-binary systems are derived from measured phase diagrams and thermodynamic data by CAL-PHAD technique, and the sub-binary phase diagrams are calculated according to phase equilibrium principle. Then, the thermodynamic functions for sub-binary systems are extrapolated to the BaB2O4-BaF2-2NaF-Na2B2O4 reciprocal system, and the phase diagram of the reciprocal system is calculated. The calculated phase diagrams are verified by additional experiments. (C) 1996 Academic Press, Inc.","authors":[],"categoryName":"|","doi":"","fpage":"80","id":"64f02558-2db2-463e-a865-bfd6c53ccdc6","issue":"1","journal":{"abbrevTitle":"JOSSC","id":"4fabf078-5d8e-44a5-92c1-bc1fac4e5f4b","issnPpub":"0022-4596","publisherId":"JOSSC","title":"Journal of Solid State Chemistry"},"keywords":[{"id":"322c2bcf-fd54-4558-818c-c44d2d0d9c6b","keyword":"phase-equilibrium;beta-bab2o4;crystal","originalKeyword":"phase-equilibrium;beta-bab2o4;crystal"}],"language":"en","publisherId":"0022-4596_1996_1_2","title":"Thermodynamic investigation on the BaB2O4-BaF2-2NaF-Na2B2O4 reciprocal system","volume":"126","year":"1996"},{"abstractinfo":"A Ti-45at.%Al alloy which was solution-treated at 1350℃ for 30 minutes and quenched in water is employed to explore mechanisms of α_2→γphase transformation. The ageing process of the quenched alloy has been in situ studied it has been found that the γ lamellae can precipitate in the α_2 matrix by two mechanisms. When The alloy is aged at 700℃, the stacking faults pre-existing in the α_2 matrix start to grow and more are generated.With the increase of ageing time and ageing temperature the density of stacking faults is increased and the γ lamellae then precipitate. This isα diffusion-controlled process. Alternatively, the γ lamellae may be formed from the α_2 matrix by 1/3(1100) shearing on the (0001) plane. The latter mechanism implies that the strain-induced transformation may occur, which is confirmed by deformation of the quenched alloy.","authors":[{"authorName":"XU Qiang","id":"e1dce08b-61fa-4aac-a121-de6c8c68df40","originalAuthorName":"XU Qiang"},{"authorName":" LEI Changhui (BeiJing Laboratory of Electron Microscopy. Chinese Academy of Sciences","id":"b0438a25-268c-435d-8f19-ba4a3a81a0d7","originalAuthorName":" LEI Changhui (BeiJing Laboratory of Electron Microscopy. Chinese Academy of Sciences"},{"authorName":" P. O. Box 2724.100080 )Beijing","id":"f87c608a-d9c3-456f-b58e-9527b9488c2d","originalAuthorName":" P. O. Box 2724.100080 )Beijing"},{"authorName":" China.ZHANG Yonggang (Department of Materials Science and Engineering","id":"63d0a3f9-0d74-4956-b569-461355078b3d","originalAuthorName":" China.ZHANG Yonggang (Department of Materials Science and Engineering"},{"authorName":" BeiJing University of Aeronautics and Astronautics","id":"dd84ae64-ea2b-4be9-9574-2bba70a474db","originalAuthorName":" BeiJing University of Aeronautics and Astronautics"},{"authorName":" 100083 Beijing","id":"996b47b0-c4d7-48d1-a5ad-0c8ce1b50eea","originalAuthorName":" 100083 Beijing"},{"authorName":" China.)","id":"ebf16001-3e39-482a-bfcd-7d09b0e74377","originalAuthorName":" China.)"}],"categoryName":"|","doi":"","fpage":"597","id":"ec1ec615-aea3-4c2d-8be6-dc832e45de80","issue":"z1","journal":{"abbrevTitle":"JSXBYWB","coverImgSrc":"journal/img/cover/amse.jpg","id":"49","issnPpub":"1006-7191","publisherId":"JSXBYWB","title":"金属学报(英文版)"},"keywords":[{"id":"aad9e6f1-e5ee-4db0-8679-22332369e5a1","keyword":": TiAl","originalKeyword":": TiAl"},{"id":"5dc42bd3-8e28-4ac3-a1a0-2ac1e50fb508","keyword":"null","originalKeyword":"null"},{"id":"a8c2c5f6-3c75-472b-b975-17b461caf87b","keyword":"null","originalKeyword":"null"}],"language":"en","publisherId":"1006-7191_1995_z1_9","title":"MECHANISMS OF α_2→α_2/γ PHASE TRANSFORMATION IN A TiAL ALLOY","volume":"8","year":"1995"},{"abstractinfo":"为了探讨铝基体电沉积β-PbO2复合层的合适工艺,采用正交试验对电沉积β-PbO2-WC-TiO2-CeO2-ZrO2-SnO2复合层的工艺条件进行了优选,以镀层的表面形貌指数、锌沉积阳极槽电压为指标,确定了其最佳参数:4g/LSnO2,0g/LCeO2,4g/LWC,2g/LZrO2,2g/L TiO2;沉积时间4h,温度50℃,pH值1.5,阳极电流密度3A/dm2。结果表明:以最佳工艺沉积的β-PbO2复合层作锌电积阳极,寿命比α-PbO2镀层的长。","authors":[{"authorName":"刘建华","id":"40c6e877-6053-4a49-8b58-08ff61392ba6","originalAuthorName":"刘建华"},{"authorName":"陈步明","id":"b8a67cf6-0f14-48ff-a24b-aaaa7f8b19d2","originalAuthorName":"陈步明"},{"authorName":"郭忠诚","id":"dabe2e63-1c61-4a41-9ef4-43a957c32567","originalAuthorName":"郭忠诚"},{"authorName":"石小钊","id":"8151775a-d4cb-4c04-b469-e275a27d2109","originalAuthorName":"石小钊"},{"authorName":"徐瑞东","id":"f2b9098a-caf8-4f73-8c05-ea7c207fc90e","originalAuthorName":"徐瑞东"}],"doi":"","fpage":"39","id":"81429bca-b88a-470c-9abf-33eadcd4fe83","issue":"9","journal":{"abbrevTitle":"CLBH","coverImgSrc":"journal/img/cover/CLBH.jpg","id":"7","issnPpub":"1001-1560","publisherId":"CLBH","title":"材料保护"},"keywords":[{"id":"4e215e2e-761c-4345-af28-8cf244554f16","keyword":"电沉积","originalKeyword":"电沉积"},{"id":"3c631170-3a4f-4c2d-a075-eeb38ce114af","keyword":"β-PbO2复合镀层","originalKeyword":"β-PbO2复合镀层"},{"id":"c2c15c06-cea4-432f-bd5d-19a376bd18d9","keyword":"正交试验","originalKeyword":"正交试验"},{"id":"99b8fcb1-a181-4a1a-b88e-c5b0f1289c5d","keyword":"最佳工艺","originalKeyword":"最佳工艺"},{"id":"5357626b-3432-4d49-8712-0f9a93dd1cb4","keyword":"铝基体","originalKeyword":"铝基体"}],"language":"zh","publisherId":"clbh201209014","title":"铝基体β-PbO2-WC-TiO2-CeO2-ZrO2-SnO2电沉积层的工艺优选","volume":"45","year":"2012"}],"totalpage":7985,"totalrecord":79843}