{"currentpage":1,"firstResult":0,"maxresult":10,"pagecode":5,"pageindex":{"endPagecode":5,"startPagecode":1},"records":[{"abstractinfo":"玻璃钢夹砂管在土木水利工程领域中得到了越来越广泛的应用,但现有的埋地管道地震响应分析模型大多不考虑管-土动力相互作用,且多针对均质材料管道,无法应用于具有明显层状复合材料结构特征的玻璃钢夹砂管.为此,本文基于玻璃钢夹砂管的层状复合材料结构特征,建立了完整的埋地玻璃钢夹砂管地震响应分析模型,在数值分析模型中,考虑了管-土间复杂的动力相互作用,以及地震散射波从有限域向无限域的传播.在上述基础上,重点分析管道长度、管道直径、管周土体弹性模量以及管道埋深等因素对埋地玻璃钢夹砂管地震响应的影响,并通过对影响规律的分析给出提高埋地玻璃钢夹砂管抗震能力的工程建议措施.","authors":[{"authorName":"徐磊","id":"9c089b43-3179-40d2-925f-b78b6c899efb","originalAuthorName":"徐磊"},{"authorName":"刘杰","id":"bc137126-f689-4cea-b2dd-aa876d4e7bf7","originalAuthorName":"刘杰"},{"authorName":"叶志才","id":"93be4c74-aa66-4b68-b33d-768d85cb09bb","originalAuthorName":"叶志才"},{"authorName":"任青文","id":"6ff83a23-8a01-474d-a2d7-a1dcaefc86a4","originalAuthorName":"任青文"}],"doi":"","fpage":"57","id":"5b1100fa-b20d-4ee9-a188-c6fa1ee12652","issue":"6","journal":{"abbrevTitle":"BLGFHCL","coverImgSrc":"journal/img/cover/BLGFHCL.jpg","id":"6","issnPpub":"1003-0999","publisherId":"BLGFHCL","title":"玻璃钢/复合材料"},"keywords":[{"id":"a29a1669-ccde-40d8-8182-208ae06b8851","keyword":"玻璃钢夹砂管","originalKeyword":"玻璃钢夹砂管"},{"id":"2965bd8e-e2cb-4f60-b4d3-b75d1aa9b185","keyword":"地震响应","originalKeyword":"地震响应"},{"id":"b6606124-d627-4ec8-b664-eecc3ae5819e","keyword":"粘弹性边界","originalKeyword":"粘弹性边界"},{"id":"c9de7270-baa0-40d1-b1a8-8d339d0a175f","keyword":"动力接触","originalKeyword":"动力接触"},{"id":"1f7b33a3-2f6e-420d-839f-2f6fe88b22d8","keyword":"层合壳单元","originalKeyword":"层合壳单元"},{"id":"2031a1f2-cb0b-4f62-887f-92e35770a99e","keyword":"ABAQUS","originalKeyword":"ABAQUS"}],"language":"zh","publisherId":"blgfhcl201206012","title":"埋地玻璃钢夹砂管地震响应的影响因素分析","volume":"","year":"2012"},{"abstractinfo":"概述了粘弹性阻尼材料的阻尼机理,对粘弹性高温阻尼材料的研究现状及技术途径进行了分析讨论,并对其研究前景进行了展望.","authors":[{"authorName":"万松林","id":"d04e6e31-06a8-4c57-bf65-84bcac38b5ed","originalAuthorName":"万松林"}],"doi":"10.3969/j.issn.1003-1545.2012.03.022","fpage":"97","id":"8f124f8d-fbf0-4ebb-a38c-479308810ab1","issue":"3","journal":{"abbrevTitle":"CLKFYYY","coverImgSrc":"journal/img/cover/CLKFYYY.jpg","id":"10","issnPpub":"1003-1545","publisherId":"CLKFYYY","title":"材料开发与应用"},"keywords":[{"id":"f69af99d-b55e-4330-83c1-791403d451db","keyword":"粘弹性","originalKeyword":"粘弹性"},{"id":"7a7cd1ec-9b84-4deb-9a92-664878070357","keyword":"阻尼材料","originalKeyword":"阻尼材料"},{"id":"626831bd-73a4-47ce-a4de-1fc730e3023a","keyword":"高温","originalKeyword":"高温"}],"language":"zh","publisherId":"clkfyyy201203022","title":"粘弹性高温阻尼材料研究进展","volume":"27","year":"2012"},{"abstractinfo":"电流变体是智能材料与结构中一种重要的致动器材料.本文对电流变体在电场作用下的粘弹性特性进行了实验研究.本文对电流变体进行了强制振荡试验,测试了流体在不同应力幅值、应 力频率下的剪切模量变化,得到了电流变体的复剪切模量以及剪切存储模量、损耗模量随外加电场变化的规律.","authors":[{"authorName":"刘彦菊","id":"5e8115ea-cb2c-4a46-878b-8ef1455040c9","originalAuthorName":"刘彦菊"},{"authorName":"冷劲松","id":"0738df96-953e-43be-adf3-4559726d7a51","originalAuthorName":"冷劲松"},{"authorName":"王殿富","id":"2d8fa134-dc9a-4bef-bb64-e8f102f052a8","originalAuthorName":"王殿富"}],"doi":"10.3969/j.issn.1673-2812.2000.z1.117","fpage":"528","id":"fc88bc53-fffa-416a-92e2-9482a4f07c6e","issue":"z1","journal":{"abbrevTitle":"CLKXYGCXB","coverImgSrc":"journal/img/cover/CLKXYGCXB.jpg","id":"13","issnPpub":"1673-2812","publisherId":"CLKXYGCXB","title":"材料科学与工程学报"},"keywords":[{"id":"80cecc19-43ba-4e1a-91f2-ae057e84fb94","keyword":"电流变体","originalKeyword":"电流变体"},{"id":"42e5a40f-95b5-4e3f-a137-aeb2544a26ed","keyword":"粘弹性","originalKeyword":"粘弹性"},{"id":"3423bb8d-2e7a-4798-96ee-0aaa16fbd159","keyword":"复剪切模量","originalKeyword":"复剪切模量"}],"language":"zh","publisherId":"clkxygc2000z1117","title":"电流变体的粘弹性","volume":"18","year":"2000"},{"abstractinfo":"采用非线性有限元方法研究了高分子材料的粘弹性摩擦接触问题,采用初应变法将粘弹性材料的蠕变应变转化为等价的虚拟节点力,并结合线性粘弹性理论对蠕变应变进行迭代修正,从而获得粘弹性材料满足摩擦接触条件的解答.文中考虑了接触问题的边界非线性和粘弹性材料的材料非线性.并考虑了接触过程中温度、模量等随时间的增加而改变.研究结果集中表现了接触区的变形、应力分布等情况.作为具体示例,计算了钢与高分子聚丙烯材料在不同摩擦系数下的接触问题,获得了粘弹性摩擦接触问题的大量结果.","authors":[{"authorName":"江晓禹","id":"8edf6fdb-6587-4ab7-b749-72fdca448960","originalAuthorName":"江晓禹"},{"authorName":"孔祥安","id":"3b6d3364-489f-47dc-954b-43170597bc70","originalAuthorName":"孔祥安"}],"doi":"","fpage":"16","id":"8ee04ec0-a6c3-4d28-97f8-4917c9eca163","issue":"1","journal":{"abbrevTitle":"GFZCLKXYGC","coverImgSrc":"journal/img/cover/GFZCLKXYGC.jpg","id":"31","issnPpub":"1000-7555","publisherId":"GFZCLKXYGC","title":"高分子材料科学与工程"},"keywords":[{"id":"026f666f-73a1-43c2-99df-46c3f3d49984","keyword":"高分子","originalKeyword":"高分子"},{"id":"e78aab90-4ba2-4b6c-afea-508a1a657b82","keyword":"粘弹性","originalKeyword":"粘弹性"},{"id":"e1a5e9c4-b1c1-494d-9914-a6fb072e2ca2","keyword":"接触应力","originalKeyword":"接触应力"}],"language":"zh","publisherId":"gfzclkxygc200001006","title":"高分子材料的粘弹性摩擦接触力学研究","volume":"16","year":"2000"},{"abstractinfo":"建立了基于三细胞模型数值预报三维编织复合材料粘弹性能的方法。首先构造了三维编织复合材料的三细胞模型并施加周期性边界条件,随后利用标准线性固体模型模拟树脂基体的粘弹性能,导出基体的松弛模量,再通过有限元计算及Prony级数拟合,得到三种胞元的粘弹性参数。然后根据三种胞元的体积分数和粘弹性参数,利用三个标准线性固体模型并联,模拟得到三维编织复合材料沿编织方向的粘弹性参数和蠕变本构关系。最后,分析了编织角和纤维体积含量对粘弹性能的影响。","authors":[{"authorName":"蔡永明","id":"459840c8-7fb2-4482-8acd-0e55c09f4588","originalAuthorName":"蔡永明"},{"authorName":"孙慧玉","id":"2d4b0737-4625-4117-80b7-19c9c6bcde86","originalAuthorName":"孙慧玉"}],"doi":"","fpage":"271","id":"c48c7d8e-7e5a-4a69-bf28-199628c876f8","issue":"2","journal":{"abbrevTitle":"CLKXYGCXB","coverImgSrc":"journal/img/cover/CLKXYGCXB.jpg","id":"13","issnPpub":"1673-2812","publisherId":"CLKXYGCXB","title":"材料科学与工程学报"},"keywords":[{"id":"262089c5-6599-4a8a-bc27-13e8f627bc39","keyword":"三维编织复合材料","originalKeyword":"三维编织复合材料"},{"id":"84f931b6-964b-449d-9311-497ac94030e1","keyword":"三细胞模型","originalKeyword":"三细胞模型"},{"id":"73a70ede-3c28-42a0-9d85-de8bcda0126d","keyword":"粘弹性","originalKeyword":"粘弹性"},{"id":"0030a1a5-b52e-416d-9d7f-0ad4fc1c61af","keyword":"蠕变柔量","originalKeyword":"蠕变柔量"}],"language":"zh","publisherId":"clkxygc201202022","title":"树脂基三维编织复合材料粘弹性能的数值预报","volume":"30","year":"2012"},{"abstractinfo":"概述了聚合物熔体粘弹性本构方程的发展历程,给出了有代表性的线性粘弹性和非线性粘弹性本构方程的各种形式的数学表达式,讨论了它们的特点及应用范围,旨在为聚合物熔体流动数值模拟中本构方程的选择提供帮助.","authors":[{"authorName":"柳和生","id":"2b36fc36-2ff3-4660-a9f9-decea8bb292b","originalAuthorName":"柳和生"},{"authorName":"涂志刚","id":"92f7f113-2f45-4f7b-a3a8-8156118b9bd4","originalAuthorName":"涂志刚"},{"authorName":"熊洪槐","id":"e803d6b0-793a-4932-8b0b-219d56d89053","originalAuthorName":"熊洪槐"}],"doi":"","fpage":"22","id":"b2b0f604-3672-45ae-9494-0f59a0d3c3aa","issue":"1","journal":{"abbrevTitle":"GFZCLKXYGC","coverImgSrc":"journal/img/cover/GFZCLKXYGC.jpg","id":"31","issnPpub":"1000-7555","publisherId":"GFZCLKXYGC","title":"高分子材料科学与工程"},"keywords":[{"id":"b45ea8b9-4e4c-4718-b138-f7eab9836246","keyword":"本构方程","originalKeyword":"本构方程"},{"id":"fb36b9a6-f547-40aa-869d-916ee27018e1","keyword":"粘弹性","originalKeyword":"粘弹性"},{"id":"55fcdfd7-4407-4d79-a7ef-7e456d590f25","keyword":"聚合物熔体","originalKeyword":"聚合物熔体"}],"language":"zh","publisherId":"gfzclkxygc200201005","title":"聚合物熔体粘弹性本构方程","volume":"18","year":"2002"},{"abstractinfo":"使用DMA测定了3种降温速率低温保存的家兔颈总动脉的蠕变曲线.结果表明:1.5℃/min降温速率低温保存后,血管的粘弹性最接近新鲜对照组;而对应降温速率1.5,5,10℃/min,血管粘弹性依次降低.动脉的粘弹性极有可能是评估其低温保存效果的潜在评价指标.","authors":[{"authorName":"赵刚","id":"9a5d26aa-504f-40c2-ba44-dc850c244dff","originalAuthorName":"赵刚"},{"authorName":"雷冬","id":"14c4320a-0d63-4dc3-b1eb-250384669d17","originalAuthorName":"雷冬"},{"authorName":"张保","id":"7c088f7a-aa73-44eb-b6f7-d02717104d1b","originalAuthorName":"张保"},{"authorName":"王沛涛","id":"d7b18d2d-10ec-405b-ba53-4e3e8f945ac8","originalAuthorName":"王沛涛"},{"authorName":"龚明","id":"2fc5dd05-fa48-4c5a-a5a6-d70a4e05561c","originalAuthorName":"龚明"},{"authorName":"程曙霞","id":"7963f198-78da-43e8-872d-12049d9f498b","originalAuthorName":"程曙霞"}],"doi":"","fpage":"52","id":"da45abe8-2cba-4a12-b02b-837731c63694","issue":"z2","journal":{"abbrevTitle":"GCRWLXB","coverImgSrc":"journal/img/cover/GCRWLXB.jpg","id":"32","issnPpub":"0253-231X","publisherId":"GCRWLXB","title":"工程热物理学报 "},"keywords":[{"id":"6f226276-df92-410e-a0d4-505c91cb8723","keyword":"动脉","originalKeyword":"动脉"},{"id":"2c36f94a-42f3-4ffa-8c82-6a5211e40b8d","keyword":"低温保存","originalKeyword":"低温保存"},{"id":"df5bbba2-9048-4284-8d4e-d2335cefac38","keyword":"蠕变","originalKeyword":"蠕变"},{"id":"ebe3b880-4b49-4889-922f-2a3ea365dfd9","keyword":"粘弹性","originalKeyword":"粘弹性"}],"language":"zh","publisherId":"gcrwlxb2007z2014","title":"降温速率对低温保存动脉粘弹性的影响","volume":"28","year":"2007"},{"abstractinfo":"本文结合可视化实验技术对直管中粘弹性流体振荡输运作了全面观察和分析,重点探讨振荡气液两相流中的界面现象和输运机理,考察不同管径和流体粘弹性对输运形态的影响.","authors":[{"authorName":"方晨","id":"b6559a73-37e5-47b6-95da-7c11429a3411","originalAuthorName":"方晨"},{"authorName":"彭晓峰","id":"7249311b-0913-49f0-a3df-942fed5aecb4","originalAuthorName":"彭晓峰"},{"authorName":"张舒","id":"f76e156a-c26c-4557-8575-7b3fc8df8d6a","originalAuthorName":"张舒"}],"doi":"","fpage":"796","id":"4bfcede4-6be4-42fc-a4f0-d64ac9ba8b58","issue":"5","journal":{"abbrevTitle":"GCRWLXB","coverImgSrc":"journal/img/cover/GCRWLXB.jpg","id":"32","issnPpub":"0253-231X","publisherId":"GCRWLXB","title":"工程热物理学报 "},"keywords":[{"id":"0e886489-692a-4d1a-95af-46c85d994c3d","keyword":"粘弹性流体","originalKeyword":"粘弹性流体"},{"id":"c792b0a8-57e9-4943-9835-a9f9af15ec60","keyword":"直管输运","originalKeyword":"直管输运"},{"id":"a508e238-ab06-41a6-bab2-40b45dd4daca","keyword":"高频振荡通气","originalKeyword":"高频振荡通气"}],"language":"zh","publisherId":"gcrwlxb200505024","title":"直管中粘弹性流体的振荡输运","volume":"26","year":"2005"},{"abstractinfo":"热致型凝胶的主要特点是粘度会随温度升高而增大,这与常规凝胶不同,导致所具有的粘弹性也不同,因此很有必要研究该类凝胶粘弹性流变,为其应用提供理论依据.研究了热致型凝胶体系的应变与时间的关系,根据最基本的粘弹性流变模型特征,通过实验数据建立了热致型凝胶的粘弹性流变模型,拟合了不同条件下的参数,分析了凝胶体系在不同实验条件下的粘性、弹性的变化规律以及到达另一平衡状态的快慢程度.","authors":[{"authorName":"秦国伟","id":"3e831fca-0a70-4dc6-8f2f-1240f96a003b","originalAuthorName":"秦国伟"},{"authorName":"蒲春生","id":"00410dd8-3267-4ddc-9313-cf76f080d1fb","originalAuthorName":"蒲春生"}],"doi":"","fpage":"159","id":"aa2b456f-bfe7-43e8-80cc-131b27e19b50","issue":"z1","journal":{"abbrevTitle":"GNCL","coverImgSrc":"journal/img/cover/GNCL.jpg","id":"33","issnPpub":"1001-9731","publisherId":"GNCL","title":"功能材料"},"keywords":[{"id":"084ed949-f216-472d-a31a-27317c9aa1fe","keyword":"热致型凝胶","originalKeyword":"热致型凝胶"},{"id":"3439513f-2cf4-4b3e-b992-cdecc7ee8534","keyword":"粘弹性","originalKeyword":"粘弹性"},{"id":"10f5d334-c4c9-440e-9406-f157f4b33759","keyword":"流变模型","originalKeyword":"流变模型"}],"language":"zh","publisherId":"gncl2010z1039","title":"热致型凝胶粘弹性流变模型研究","volume":"41","year":"2010"},{"abstractinfo":"研究无限长条板中粘弹性-弹性界面Griffith裂纹在Ⅰ型突加载荷作用下,裂纹尖端动态应力强度因子的时间响应.利用积分变换方法、Fourier和Laplace变换,分别推导出了弹性和粘弹性问题的控制方程组;引入位错密度函数,并结合边界条件,导出了反映裂纹尖端奇异性的Cauchy型奇异积分方程组,运用Chebyshev正交多项式化奇异积分方程组为代数方程组,用配点法进行求解;最后用Laplace积分变换数值反演方法,将拉氏域内的解反演到时间域内,求得动态应力强度因子的时间响应,并对材料参数的影响进行了分析.结果表明,剪切松弛参量对Ⅰ型动应力强度因子的影响小于对Ⅱ型的影响,而膨胀松弛参量对Ⅰ型动应力强度因子的影响大于对Ⅱ型的影响.","authors":[{"authorName":"蔡艳红","id":"7ecc9078-d3de-434a-9f15-ed542045621d","originalAuthorName":"蔡艳红"},{"authorName":"陈浩然","id":"f24ca815-8748-44be-90bd-5ec5e1f50fa8","originalAuthorName":"陈浩然"},{"authorName":"王灿","id":"cfee9aa3-f2f0-4834-adfe-f1c9ee79757d","originalAuthorName":"王灿"}],"doi":"10.3321/j.issn:1000-3851.2005.06.028","fpage":"156","id":"b0a33f41-38d4-4893-a06c-66d54f1130da","issue":"6","journal":{"abbrevTitle":"FHCLXB","coverImgSrc":"journal/img/cover/FHCLXB.jpg","id":"26","issnPpub":"1000-3851","publisherId":"FHCLXB","title":"复合材料学报"},"keywords":[{"id":"dc22d549-ba2d-4f2f-883e-01220a691924","keyword":"粘弹性","originalKeyword":"粘弹性"},{"id":"9cc15762-9eec-412b-933e-5158665604cc","keyword":"界面裂纹","originalKeyword":"界面裂纹"},{"id":"baa52d7d-0304-47e0-b6c7-14611354e52e","keyword":"动态应力强度因子","originalKeyword":"动态应力强度因子"},{"id":"bfd0c21b-4b0f-4c2c-8d6d-d1210b34fb28","keyword":"位错密度函数","originalKeyword":"位错密度函数"},{"id":"40b64765-86b9-42ee-b3ff-7a444a62a442","keyword":"奇异积分方程","originalKeyword":"奇异积分方程"}],"language":"zh","publisherId":"fhclxb200506028","title":"无限长条板中弹性与粘弹性界面裂纹尖端场","volume":"22","year":"2005"}],"totalpage":603,"totalrecord":6029}