{"currentpage":1,"firstResult":0,"maxresult":10,"pagecode":5,"pageindex":{"endPagecode":5,"startPagecode":1},"records":[{"abstractinfo":"基于电子给/受体共混体系制备的体相异质结型有机太阳能电池是一种低耗、高效的有机光伏器件.作为器件核心,光电转化共混活性层的质量优劣会直接影响器件的能量转换效率.研究发现,不同的给/受体材料组成、2种材料的共混比例、共溶剂的选择以及器件的热退火处理等因素都可影响到活性层质量.结合上述研究热点,综述了体相异质结型有机太阳能电池近年来的研究进展,阐述了该研究领域下一步发展的重点、趋势及前景.","authors":[{"authorName":"李蛟","id":"0804c473-6b9f-4ac8-ab4c-14d8da2c1103","originalAuthorName":"李蛟"},{"authorName":"刘俊成","id":"4afbfc5e-d7c5-4104-ae9c-cd31268d59ec","originalAuthorName":"刘俊成"},{"authorName":"高从堵","id":"275dd1af-5244-468c-bd5a-871717905b61","originalAuthorName":"高从堵"}],"doi":"","fpage":"104","id":"0b7c3a68-0912-4cde-9b8d-bd8b5466e1f4","issue":"9","journal":{"abbrevTitle":"CLDB","coverImgSrc":"journal/img/cover/CLDB.jpg","id":"8","issnPpub":"1005-023X","publisherId":"CLDB","title":"材料导报"},"keywords":[{"id":"dd264134-230a-4214-8db5-4cd467102508","keyword":"体相异质结","originalKeyword":"体相异质结"},{"id":"663cfd5d-0c85-44b3-9bf3-809d75e73334","keyword":"有机太阳能电池","originalKeyword":"有机太阳能电池"},{"id":"0c5d9e0e-4f93-4245-a2b0-8f54b38aa626","keyword":"给体","originalKeyword":"给体"},{"id":"5aec5b06-86b1-4a98-9cf4-bac76f34c11d","keyword":"受体","originalKeyword":"受体"},{"id":"380f3621-26b9-45c0-a5fe-9f7920bf33f0","keyword":"能量转换效率","originalKeyword":"能量转换效率"}],"language":"zh","publisherId":"cldb200909020","title":"体相异质结型有机太阳能电池的研究进展","volume":"23","year":"2009"},{"abstractinfo":"由于有机太阳能电池具有成本低、易加工、可以制作在柔性衬底上等优点备受人们关注.文中采用了溶液旋涂的加工方法,研究了基于聚3-乙基噻吩(P3HT)与富勒烯衍生物(PCBM)共混的有机聚合物体相异质结太阳能电池.在大气条件下完成了器件的制备与测试,通过旋涂条件、质量分数、退火条件等优化提升了器件的光电特性,获得开路电压(Voc)为0.62 V,短路电流密度(Jsc)为14.97 mA/cm2,填充因子(FF)为42.21%,电池效率(PCE)为3.92%的高效聚合物体相异质结太阳能电池.因此,通过对溶液加工条件的优化,可以提高薄膜质量,促进载流子传输和分离的能力.不仅可以提升有机聚合物体相异质结太阳能电池的效率,也为推进有机太阳能电池的量产化奠定了基础.","authors":[{"authorName":"王丽娟","id":"8d6e585b-4a47-42ca-9f6c-f5e6fba59746","originalAuthorName":"王丽娟"},{"authorName":"张伟","id":"da5eaac7-2c7b-42e4-8964-38c86ec3adbb","originalAuthorName":"张伟"},{"authorName":"秦海涛","id":"df5de43a-f4fa-4b33-90c2-3b328a39db52","originalAuthorName":"秦海涛"},{"authorName":"陈金星","id":"e1a3b366-8e0f-4443-a94f-476893f068c5","originalAuthorName":"陈金星"},{"authorName":"李佳明","id":"6ab6717b-f786-40ba-9397-215c442c0273","originalAuthorName":"李佳明"},{"authorName":"李野","id":"8b5c447b-ca7a-44fc-ba91-0ab732ea1d41","originalAuthorName":"李野"},{"authorName":"宋贵才","id":"94477729-e9b2-4a5a-aae6-d917b588029e","originalAuthorName":"宋贵才"},{"authorName":"张龙","id":"d196fed3-d3bc-4332-9d0f-3fbb9fc7566a","originalAuthorName":"张龙"}],"doi":"10.3788/YJYXS20132804.0521","fpage":"521","id":"0cc82d96-ad97-44d6-8b03-52798b9a6ea9","issue":"4","journal":{"abbrevTitle":"YJYXS","coverImgSrc":"journal/img/cover/YJYXS.jpg","id":"72","issnPpub":"1007-2780","publisherId":"YJYXS","title":"液晶与显示 "},"keywords":[{"id":"258728fe-7a6c-4e9f-a3f9-b6f715b4b880","keyword":"P3HT∶PCBM聚合物","originalKeyword":"P3HT∶PCBM聚合物"},{"id":"d8bcc365-3a7d-48d2-aaec-f306f51c0d30","keyword":"体异质结","originalKeyword":"体异质结"},{"id":"a415c1e9-a834-4721-923b-937a67ce3e84","keyword":"太阳能电池","originalKeyword":"太阳能电池"},{"id":"61eb7cb8-22ce-4d4f-bc17-f4593ccc553c","keyword":"溶液加工","originalKeyword":"溶液加工"}],"language":"zh","publisherId":"yjyxs201304009","title":"溶液加工条件对聚合物体相异质结太阳能电池性能的影响","volume":"28","year":"2013"},{"abstractinfo":"有机-无机杂化体异质结太阳电池以无机半导体纳米晶作为电子受体,共轭聚合物作为电子给体,是近年来的一个研究热点.在设计上,有机-无机杂化材料兼具有机材料的柔性、结构多样性、易加工和无机材料载流子迁移率高、稳定性好的优势,具有良好的发展前景.介绍了有机-无机杂化体异质结太阳电池的结构、工作原理,从共轭聚合物、无机半导体纳米材料以及电池制备工艺3个方面综述了近年来国内外研究现状,主要包括有机-无机杂化体异质结太阳电池中常用共轭聚合物结构、带隙,无机纳米晶种类、形貌、表面改性以及有源层厚度、形貌调控等内容.着重介绍了基于CdSe、TiO2、PbS类纳米晶的太阳电池.最后讨论了有机-无机杂化体异质结太阳电池目前存在的问题和发展方向.","authors":[{"authorName":"卢树弟","id":"7b26c55f-604f-4901-b4a4-e2d6bc8c9c9a","originalAuthorName":"卢树弟"},{"authorName":"寇艳蕾","id":"99c232cb-0f9c-461f-9efd-2cef9e8acf9c","originalAuthorName":"寇艳蕾"},{"authorName":"李彦沛","id":"eb0c9ce6-19b2-48b8-b3e1-8d6916f73d0c","originalAuthorName":"李彦沛"},{"authorName":"刘孔","id":"a8260257-765c-49fa-bdde-e91d51f14173","originalAuthorName":"刘孔"},{"authorName":"曲胜春","id":"f1d25878-dd14-4e83-a1e9-39a6de8f96d6","originalAuthorName":"曲胜春"}],"doi":"10.7502/j.issn.1674-3962.2015.02.07","fpage":"151","id":"3acc0fc1-fc13-4a3e-95c0-96fae39badcc","issue":"2","journal":{"abbrevTitle":"ZGCLJZ","coverImgSrc":"journal/img/cover/中国材料进展.jpg","id":"80","issnPpub":"1674-3962","publisherId":"ZGCLJZ","title":"中国材料进展"},"keywords":[{"id":"5f891e94-14bc-42a3-a8fd-a5289ffa2bba","keyword":"无机纳米材料","originalKeyword":"无机纳米材料"},{"id":"85a6350c-ffb1-4b87-9e95-0e9bcf51f54e","keyword":"聚合物","originalKeyword":"聚合物"},{"id":"c905cc99-428f-40fa-ad36-1ed3281120a9","keyword":"太阳电池","originalKeyword":"太阳电池"},{"id":"8a14aeed-3ff6-44df-8480-4e34ab1422b5","keyword":"光电转换效率","originalKeyword":"光电转换效率"}],"language":"zh","publisherId":"zgcljz201502007","title":"有机-无机杂化体异质结太阳电池研究现状","volume":"34","year":"2015"},{"abstractinfo":"嵌段共聚物应用于有机太阳能电池是提高电池光电转化率的途径之一.简要介绍了太阳能电池的工作原理与结构,着重综述了嵌段共聚物在有机太阳能电池中作为光电活跃层、相容剂、模板以及阻隔材料等方面的应用,并展望了其应用前景.","authors":[{"authorName":"叶妮雅","id":"95d73352-4827-46ac-8a1d-3adea3357643","originalAuthorName":"叶妮雅"},{"authorName":"张梁","id":"4f299721-91bd-4c72-a701-853ea6c34b06","originalAuthorName":"张梁"},{"authorName":"宫希杰","id":"e3496372-642b-4bf1-af63-d2e1a893d155","originalAuthorName":"宫希杰"},{"authorName":"李晓芳","id":"14737e9b-a916-4d29-a446-355ba96ecc41","originalAuthorName":"李晓芳"},{"authorName":"李海英","id":"2cbce2b7-090b-42f9-9b85-ce7a1a881489","originalAuthorName":"李海英"},{"authorName":"雷良才","id":"85d0ed85-dff3-469c-9f04-4ce2efb07d55","originalAuthorName":"雷良才"}],"doi":"","fpage":"131","id":"5b3e17c2-5658-46eb-9666-803203516a9d","issue":"3","journal":{"abbrevTitle":"CLDB","coverImgSrc":"journal/img/cover/CLDB.jpg","id":"8","issnPpub":"1005-023X","publisherId":"CLDB","title":"材料导报"},"keywords":[{"id":"6db43953-65c8-4f67-a7a2-d5f77aaf05ef","keyword":"有机太阳能电池","originalKeyword":"有机太阳能电池"},{"id":"56fe3db5-36f7-4469-a1ad-73a8ed2cdf8b","keyword":"嵌段共聚物","originalKeyword":"嵌段共聚物"},{"id":"9d902cb8-8306-4536-be40-f7c35e575867","keyword":"体相异质结","originalKeyword":"体相异质结"}],"language":"zh","publisherId":"cldb201403027","title":"嵌段共聚物在有机太阳能电池中的应用","volume":"28","year":"2014"},{"abstractinfo":"SiGe/Si异质结光电器件及其光电集成(OEIC)是硅基光电研究的一个非常引人注目的领域.综述了SiGe/Si异质结材料的基本性质,SiGe/Si异质结光电器件的结构、性能、应用及其光电集成.重点介绍了SiGe/Si光电探测器及其与其他相关器件的集成.","authors":[{"authorName":"刘国军","id":"a99d7f53-c028-4e5d-a17e-13b7fcbfb582","originalAuthorName":"刘国军"},{"authorName":"叶志镇","id":"d7cdf70a-931c-467a-9968-60e1456984c5","originalAuthorName":"叶志镇"},{"authorName":"吴贵斌","id":"2b5d0537-4418-49a0-8c81-da850921957a","originalAuthorName":"吴贵斌"},{"authorName":"孙伟峰","id":"3e44c9f1-abed-4850-b504-46cfadcfb896","originalAuthorName":"孙伟峰"},{"authorName":"赵星","id":"3d11298a-70e8-48db-941b-a56f2f4db859","originalAuthorName":"赵星"},{"authorName":"赵炳辉","id":"bf8d77ef-c569-49ef-8d25-a12afef68e02","originalAuthorName":"赵炳辉"}],"doi":"","fpage":"116","id":"8b42af91-91f6-48b2-b806-bbcc0ae4322a","issue":"1","journal":{"abbrevTitle":"CLDB","coverImgSrc":"journal/img/cover/CLDB.jpg","id":"8","issnPpub":"1005-023X","publisherId":"CLDB","title":"材料导报"},"keywords":[{"id":"f1cfd72a-67bf-491d-9a59-b04d205cb1dc","keyword":"SiGe/Si异质结","originalKeyword":"SiGe/Si异质结"},{"id":"af4ab0b5-e39a-4a8f-901c-61b42341fc54","keyword":"光电器件","originalKeyword":"光电器件"},{"id":"940605ad-30be-4817-b92f-d4b51f9e6165","keyword":"光电集成","originalKeyword":"光电集成"}],"language":"zh","publisherId":"cldb200601031","title":"SiGe/Si异质结光电器件","volume":"20","year":"2006"},{"abstractinfo":"近年来聚噻吩衍生物作为电子给体材料的异质结薄膜成为国内外研究的热点.讨论了异质结薄膜太阳能电池的工作原理,重点分析了材料、混合比例、制作工艺等对聚噻吩衍生物异质结薄膜太阳能电池性能的影响,并指出了今后聚噻吩衍生物异质结薄膜太阳能电池的发展方向.","authors":[{"authorName":"甘礼华","id":"037e52a3-f707-4cc2-8a35-07884ceaccfc","originalAuthorName":"甘礼华"},{"authorName":"赵丽","id":"8c4a0052-cbb5-4eaa-9a1f-2c8defde1699","originalAuthorName":"赵丽"},{"authorName":"朱大章","id":"8275add9-8812-43bf-9dd9-a34f0c373204","originalAuthorName":"朱大章"},{"authorName":"刘明贤","id":"260167f4-49b0-46fe-8d73-5819ad2f247b","originalAuthorName":"刘明贤"},{"authorName":"陈龙武","id":"fb36ef1b-6da8-417b-97ae-c329ead64cab","originalAuthorName":"陈龙武"}],"doi":"10.3969/j.issn.1007-8924.2010.02.020","fpage":"104","id":"ab28028c-e535-4975-a290-67bbb3351941","issue":"2","journal":{"abbrevTitle":"MKXYJS","coverImgSrc":"journal/img/cover/MKXYJS.jpg","id":"54","issnPpub":"1007-8924","publisherId":"MKXYJS","title":"膜科学与技术 "},"keywords":[{"id":"20731250-fd60-494a-acf2-60f3a4c6dc90","keyword":"聚噻吩衍生物","originalKeyword":"聚噻吩衍生物"},{"id":"ba1f1314-9444-40bc-be5a-bef850410b81","keyword":"异质结薄膜","originalKeyword":"异质结薄膜"},{"id":"db2f6c9d-14ec-4364-b1bc-29742b684546","keyword":"太阳能电池","originalKeyword":"太阳能电池"}],"language":"zh","publisherId":"mkxyjs201002020","title":"基于聚噻吩衍生物的异质结薄膜太阳能电池","volume":"30","year":"2010"},{"abstractinfo":"利用Matlab编程模拟仿真了GaN/SiC异质结的正向恢复过程.讨论了GaN/SiC异质结的模型,分析了异质结的外因(外加电流变化率、温度等)及内因(N区掺杂浓度、电子迁移率等)对异质结正向峰值电压和正向恢复时间的影响,对比了GaN/6H-SiC、GaN/4H-SiC、GaN/3C-SiC三种异质结的正向恢复过程.结果表明,前述内、外因素对GaN/SiC异质结的正向恢复有明显影响,可通过调节各参数以优化GaN/SiC异质结的正向恢复过程.","authors":[{"authorName":"赵少云","id":"a449b82a-61ea-4782-8bc4-7d62cc6d5434","originalAuthorName":"赵少云"},{"authorName":"韦文生","id":"15b0e51b-5c78-439a-9458-3f9cc3edec44","originalAuthorName":"韦文生"}],"doi":"10.11896/j.issn.1005-023X.2016.08.032","fpage":"143","id":"8ba21d91-235b-49a5-9cc1-818deadd45b4","issue":"8","journal":{"abbrevTitle":"CLDB","coverImgSrc":"journal/img/cover/CLDB.jpg","id":"8","issnPpub":"1005-023X","publisherId":"CLDB","title":"材料导报"},"keywords":[{"id":"06008ec3-2ff6-4627-95c7-2ab8f34435c0","keyword":"GaN/SiC异质结","originalKeyword":"GaN/SiC异质结"},{"id":"a4dd4a09-9547-4663-9dbd-ab95f6de97fb","keyword":"正向恢复","originalKeyword":"正向恢复"},{"id":"35ccd796-7e09-4d91-80bb-5213739bf6fe","keyword":"峰值电压","originalKeyword":"峰值电压"},{"id":"bf4c7934-40de-4151-8304-a3f664ca8626","keyword":"正向恢复时间","originalKeyword":"正向恢复时间"},{"id":"31d2fe78-b03f-4967-8254-219dd3c470aa","keyword":"数值模拟","originalKeyword":"数值模拟"}],"language":"zh","publisherId":"cldb201608032","title":"GaN/SiC异质结正向恢复行为的数值模拟","volume":"30","year":"2016"},{"abstractinfo":"薄膜硅/晶体硅异质结(HIT)太阳电池是界面器件,其界面性质直接决定器件的性能.本文采用简化的RCA清洗并结合氧化膜保护工艺对硅片进行前期处理;采用等离子体增强化学气相沉积技术(PECVD)制备薄膜硅/晶体硅异质结;通过光发射谱(OES)研究了PECVD在不同的匹配速度下起辉基元浓度随时间的变化,证实了基元浓度的不稳定对电池界面性质有一定的影响;分析了退火工艺对异质结的界面特性的影响,在10-4 Pa量级的背景真空和200℃下进行退火,可显著提高电池开路电压Voc和填充因子FF.本文结果表明:硅片前期处理的氧化膜保护工艺及后退火处理,皆可明显地改善HIT电池的界面性质、提高电池的转换效率.","authors":[{"authorName":"王楠","id":"a3e0f3e3-ea10-447f-9ae3-0ce7f0b0e28b","originalAuthorName":"王楠"},{"authorName":"张瑜","id":"07055eb6-01bb-4d50-b2db-a989e2708aa3","originalAuthorName":"张瑜"},{"authorName":"周玉琴","id":"fbdb76ab-36ff-4891-bc02-f70a01ae971a","originalAuthorName":"周玉琴"}],"doi":"","fpage":"235","id":"066136f0-75e4-4503-8e73-1590cbe58420","issue":"2","journal":{"abbrevTitle":"RGJTXB","coverImgSrc":"journal/img/cover/RGJTXB.jpg","id":"57","issnPpub":"1000-985X","publisherId":"RGJTXB","title":"人工晶体学报"},"keywords":[{"id":"1591fd5d-bfa0-4c98-8af8-b70f5f7a6f27","keyword":"硅异质结太阳电池","originalKeyword":"硅异质结太阳电池"},{"id":"d0a7e501-de0f-4d25-9c07-45b14833b8c0","keyword":"钝化处理","originalKeyword":"钝化处理"},{"id":"95f9f083-1686-44b2-86d3-50e1dc43ecbd","keyword":"等离子体初期不稳性","originalKeyword":"等离子体初期不稳性"},{"id":"be6529a5-0338-4d98-9a49-1477218b6288","keyword":"退火处理","originalKeyword":"退火处理"},{"id":"43be12f0-28e1-4e7d-adc6-de1e325fd39f","keyword":"界面特性","originalKeyword":"界面特性"}],"language":"zh","publisherId":"rgjtxb98201302009","title":"硅异质结电池界面处理关键工艺的研究","volume":"42","year":"2013"},{"abstractinfo":"光催化制取太阳能燃料主要包括光催化分解H2O制取H2及光催化还原CO2制取碳氢化合物,是应对能源危机最具前景的方法之一.目前,太阳能燃料的最高转化效率为5%,无法满足商业化要求(≥10%).纳米异质结由于能展现出单组分纳米材料或体相异质结所不具备的独特性质,更能促进光生电子和空穴快速转移,提供更多的光生电子或使光生电子具有更强的还原性,因而能显著提高光催化活性.本文主要综述了几种纳米异质结(Ⅰ-型、Ⅱ-型、p-n型及Z-型)的光催化原理及其在制取太阳能燃料方面的研究进展,并展望了研究发展方向.","authors":[{"authorName":"韩成","id":"0f2f5de5-6828-4b55-a027-76bee7f8390c","originalAuthorName":"韩成"},{"authorName":"雷永鹏","id":"8b902233-bee3-4f94-8e19-cf351e0b5964","originalAuthorName":"雷永鹏"},{"authorName":"王应德","id":"b03b6054-5a1c-4b49-9a2a-3d4f293500be","originalAuthorName":"王应德"}],"doi":"10.15541/jim20150182","fpage":"1121","id":"f17b8ab5-18f7-4a33-ab5b-b61e04594a95","issue":"11","journal":{"abbrevTitle":"WJCLXB","coverImgSrc":"journal/img/cover/WJCLXB.jpg","id":"62","issnPpub":"1000-324X","publisherId":"WJCLXB","title":"无机材料学报"},"keywords":[{"id":"5e230a2e-45df-4fef-81a3-9b24728911f2","keyword":"纳米异质结","originalKeyword":"纳米异质结"},{"id":"ca075fbd-b1a6-4eae-9d42-347ffa85daca","keyword":"光催化材料","originalKeyword":"光催化材料"},{"id":"3304c77c-2de6-496a-81aa-eeffac0257ad","keyword":"太阳能燃料","originalKeyword":"太阳能燃料"},{"id":"e0e3fbe2-bc8f-4afe-b98c-d2fffd7ef78d","keyword":"综述","originalKeyword":"综述"}],"language":"zh","publisherId":"wjclxb201511001","title":"纳米异质结光催化材料制取太阳能燃料研究进展","volume":"30","year":"2015"},{"abstractinfo":"采用射频磁控溅射方法在ITO基片上外延掺Ag的ZnO薄膜,分别用XRD、SEM和紫外可见光分光光度计表征外延薄膜结构、形貌和光学性质.ZnO:Ag/ITO薄膜伏安特性的研究表明,ZnO:Ag与ITO形成异质结.在紫外光波长365nm、负偏压15V情况下异质结暗电流为11.2hA,光电流为198hA,灵敏度(光电流与暗电流之比)为17.7.此异质结的紫外光响应上升时间为700ms,下降时间为1.5s.","authors":[{"authorName":"李大伟","id":"36e97e7e-d3c2-4cc7-b23f-0eeb7f29e860","originalAuthorName":"李大伟"},{"authorName":"蒋向东","id":"38813690-4669-474e-8457-52c9d0004f2e","originalAuthorName":"蒋向东"},{"authorName":"谢康","id":"f2a4062e-07ba-4c4c-ac69-a8cc06409187","originalAuthorName":"谢康"},{"authorName":"曾东","id":"398e95fc-1875-44d2-acd7-fba611defd68","originalAuthorName":"曾东"}],"doi":"","fpage":"47","id":"9ba2c8c5-84d8-403a-9ded-2228690ab3a1","issue":"2","journal":{"abbrevTitle":"CLDB","coverImgSrc":"journal/img/cover/CLDB.jpg","id":"8","issnPpub":"1005-023X","publisherId":"CLDB","title":"材料导报"},"keywords":[{"id":"ea507e53-142e-4f5f-91a2-d10be476f8e6","keyword":"ZnO掺Ag","originalKeyword":"ZnO掺Ag"},{"id":"95898243-c3d4-4194-8aa5-c43f0d9e6fe1","keyword":"射频磁控溅射","originalKeyword":"射频磁控溅射"},{"id":"4112b7a0-2b2d-413a-8e0f-526e8fe03f2f","keyword":"异质结","originalKeyword":"异质结"},{"id":"74878572-f45d-46c3-8e4e-0f4a770c468f","keyword":"响应时间","originalKeyword":"响应时间"}],"language":"zh","publisherId":"cldb201102015","title":"异质外延ZnO掺Ag薄膜及其异质结紫外光特性的研究","volume":"25","year":"2011"}],"totalpage":2637,"totalrecord":26369}