{"currentpage":1,"firstResult":0,"maxresult":10,"pagecode":5,"pageindex":{"endPagecode":5,"startPagecode":1},"records":[{"abstractinfo":"研究了一种制备氧化锡纳米线的新方法-热爆形变合成法(TEDS).该方法以铝热剂为主要原料,包括自蔓延高温合成和热爆成型两个基本过程.通过自蔓延高温合成反应获得熔融状态的SnO2,再通过热爆反应,在气体迅速膨胀的过程中,把SnO2拉制成纳米线.用SEM、TEM和XRD进行了表征.结果表明,氧化锡线的长度达几到几十毫米,直径为10~100 nm,其中多数为40~60 nm,其X射线衍射图谱与SnO2的标准图谱完全吻合.与其它方法相比,TEDS法具有设备简单,操作方便,生产率高,无团聚等优点,稍加研磨便可获得长度不同的纳米棒.","authors":[{"authorName":"许并社","id":"bdec29c6-30a4-4d78-b8fe-119c94302d56","originalAuthorName":"许并社"},{"authorName":"李俊寿","id":"b551de1c-93e1-4f4e-bdb2-2ccefc5d7eba","originalAuthorName":"李俊寿"},{"authorName":"李三群","id":"cf695e45-bdd8-4531-87bd-49d8f3f4a3cc","originalAuthorName":"李三群"},{"authorName":"尹玉军","id":"92ff977d-2b4b-4292-9e0a-3b6d09f360e3","originalAuthorName":"尹玉军"}],"doi":"","fpage":"492","id":"eeec240b-e9ac-41ed-bddf-2d6dd1bc6fee","issue":"z2","journal":{"abbrevTitle":"XYJSCLYGC","coverImgSrc":"journal/img/cover/XYJSCLYGC.jpg","id":"69","issnPpub":"1002-185X","publisherId":"XYJSCLYGC","title":"稀有金属材料与工程"},"keywords":[{"id":"bff2d7d2-4850-4f95-819a-f133a5c28efe","keyword":"氧化锡","originalKeyword":"氧化锡"},{"id":"cfe13cd6-4e7c-4eab-858e-570be30bf671","keyword":"纳米线","originalKeyword":"纳米线"},{"id":"5d517ce4-0802-4d1c-ac90-9ee6954a3c9a","keyword":"功能陶瓷","originalKeyword":"功能陶瓷"},{"id":"cc20c15e-762c-4513-bea5-3720b8b8648a","keyword":"爆炸合成","originalKeyword":"爆炸合成"}],"language":"zh","publisherId":"xyjsclygc2007z2142","title":"氧化锡纳米线的合成与表征","volume":"36","year":"2007"},{"abstractinfo":"本文简介通过高能炸药合成球形纳米金刚石的一些研究进展.X射线衍射谱显示,得到的纳米金刚石微晶为立方结构金刚石;晶粒尺寸为4~6nm,并有很大的微应力.高分辨率透射电镜观察表明,金刚石微晶在形成过程中经历了液态碳微滴聚结长大的过程.在这种材料的应用方面,本文报道了纳米金刚石用于提高化学气相生长金刚石薄膜的成核率:其出色的场发射性能用于电子显示材料,以及用于耐磨、减摩材料的若干试验成果.","authors":[{"authorName":"陈权","id":"58ca8cca-1016-495b-b920-3fcf475d3f79","originalAuthorName":"陈权"},{"authorName":"恽寿榕","id":"ade9e521-f050-4b54-a3b3-818f9017039b","originalAuthorName":"恽寿榕"}],"doi":"10.3969/j.issn.1000-985X.2000.01.020","fpage":"90","id":"0e690cb5-3213-4631-b352-9e930f19c877","issue":"1","journal":{"abbrevTitle":"RGJTXB","coverImgSrc":"journal/img/cover/RGJTXB.jpg","id":"57","issnPpub":"1000-985X","publisherId":"RGJTXB","title":"人工晶体学报"},"keywords":[{"id":"0e620654-8f1c-4ad0-ba53-72a7d1dc227d","keyword":"爆炸合成","originalKeyword":"爆炸合成"},{"id":"4b57ca9e-5863-4b22-b4cc-ac224947c3ea","keyword":"纳米金刚石","originalKeyword":"纳米金刚石"},{"id":"2cd9db45-9a60-453f-8746-8bef93628188","keyword":"形貌表征","originalKeyword":"形貌表征"},{"id":"6c22de35-97da-48f4-af21-b973d6c02356","keyword":"化学气相沉积","originalKeyword":"化学气相沉积"}],"language":"zh","publisherId":"rgjtxb98200001020","title":"炸药爆轰合成纳米金刚石及其应用","volume":"29","year":"2000"},{"abstractinfo":"以石墨氧化物为前躯体,采用爆炸合成石墨烯.利用XRD,SEM,XPS,TEM,SAED和Raman等测试手段对石墨烯的形貌,成份和结构进行表征.结果表明,石墨氧化物在爆炸产生的热量和冲击波的作用下发生完全剥离并被还原成石墨烯.新合成的石墨烯呈透明褶皱状,含有2层~5层石墨层,并具有较好的晶体结构.","authors":[{"authorName":"王灿","id":"915f62cd-431b-4ba3-aec2-aadc82fc9510","originalAuthorName":"王灿"},{"authorName":"詹亮","id":"fcd91663-a73f-4cd2-85a9-ec704e6650c3","originalAuthorName":"詹亮"},{"authorName":"乔文明","id":"9fd38033-39ae-45bd-a4d2-373609cce42b","originalAuthorName":"乔文明"},{"authorName":"凌立成","id":"67530763-a356-4b91-9033-e2be0174bd48","originalAuthorName":"凌立成"}],"doi":"10.1016/S1872-5805(11)60063-2","fpage":"21","id":"32a594c5-7613-4e2a-83ea-0442e15193ce","issue":"1","journal":{"abbrevTitle":"XXTCL","coverImgSrc":"journal/img/cover/XXTCL.jpg","id":"70","issnPpub":"1007-8827","publisherId":"XXTCL","title":"新型炭材料"},"keywords":[{"id":"9249412a-8cba-43c2-8496-76a7a38cf84f","keyword":"石墨烯","originalKeyword":"石墨烯"},{"id":"dae79fed-9235-4a91-9cb4-0fa7dfaa2ae4","keyword":"石墨氧化物","originalKeyword":"石墨氧化物"},{"id":"c70531b6-d49a-4547-8b05-12a6ed0d0301","keyword":"爆炸","originalKeyword":"爆炸"},{"id":"3c7b2eff-0812-41a7-a54e-3745c094991e","keyword":"剥离","originalKeyword":"剥离"}],"language":"zh","publisherId":"xxtcl201101006","title":"爆炸合成石墨烯","volume":"26","year":"2011"},{"abstractinfo":"应用机械化学原理,研究了在振动磨样机中由磷酸二氢钙(MCPM)和氢氧化钙合成羟基磷灰石(HAP)过程的动力学机制,并建立了相应的动力学模型.结果表明,合成过程为生成中间产物二水磷酸氢钙(DCPD)的两步式反应,其中第二步反应在第一步反应结束后才开始,并且在很短的时间内(<30s)迅速完成,即发生了\"爆炸式\"反应,反应过程可用类Avrami方程进行表征.探讨了发生\"爆炸式\"反应的可能机理.","authors":[{"authorName":"赵中伟","id":"bf3d23ce-502e-488d-8c49-e13a3a375779","originalAuthorName":"赵中伟"},{"authorName":"王明","id":"62a51249-d109-4173-8410-d93c667997f9","originalAuthorName":"王明"}],"doi":"","fpage":"499","id":"268b99c6-8bec-463d-96af-bf121ba6e688","issue":"3","journal":{"abbrevTitle":"GNCL","coverImgSrc":"journal/img/cover/GNCL.jpg","id":"33","issnPpub":"1001-9731","publisherId":"GNCL","title":"功能材料"},"keywords":[{"id":"0545c738-33eb-46ff-aa24-7c46ad194146","keyword":"机械化学","originalKeyword":"机械化学"},{"id":"5e464b84-d088-46cd-b2a4-ffb41d791244","keyword":"羟基磷灰石","originalKeyword":"羟基磷灰石"},{"id":"d9633cf8-730b-4464-a3e6-a314d06da2c5","keyword":"\"爆炸式\"反应","originalKeyword":"\"爆炸式\"反应"},{"id":"2f0951ae-abda-4af6-a5eb-41cfe5458bfd","keyword":"动力学","originalKeyword":"动力学"}],"language":"zh","publisherId":"gncl200703046","title":"机械化学法合成羟基磷灰石过程中的\"爆炸式\"反应","volume":"38","year":"2007"},{"abstractinfo":"通过热引发方式使炸药-催化剂前驱体-碳氢化合物体系在密闭反应管中发生爆炸合成碳纳米管.采用TEM,HRTEM,XRD和TG等方法研究了以二茂铁、甲酸镍和乙酸钴作为催化剂前驱体对所合成碳纳米管产物的形貌、微观结构和纯度的影响.以乙酸钴为前驱体可以得到纯度较高(约80 %~90 %)、微观结构较好的管腔中空的碳纳米管.以二茂铁为前驱体,只有约10 %~20 %的碳管生成且多呈竹节状形貌.以甲酸镍为前驱体,得到的碳管纯度也不高(约10 %~20 %),碳管管壁富含结构缺陷,相当多的碳管端口膨胀成直径约为160 nm的纳米泡.XRD分析表明这些催化剂前驱体在爆炸反应后均被分解、还原为金属单质.通过对生成的碳纳米管的质量和纯度进行比较,得出本方法中催化剂的催化活性依次为:钴>铁>镍,并对本方法中高碳源浓度环境下不同催化剂的活性差异作了简要分析.","authors":[{"authorName":"卢怡","id":"9d30c148-63c8-41d1-b4f4-e5a7342b99ef","originalAuthorName":"卢怡"},{"authorName":"朱珍平","id":"a0e5eff1-0863-45da-a3a9-61927f010f97","originalAuthorName":"朱珍平"},{"authorName":"刘振宇","id":"4bade4e1-28a9-445b-9f26-acc69373b6fa","originalAuthorName":"刘振宇"}],"doi":"10.3969/j.issn.1007-8827.2004.01.001","fpage":"1","id":"dc64030d-47b7-4c7e-b79d-7fcd4f5747e0","issue":"1","journal":{"abbrevTitle":"XXTCL","coverImgSrc":"journal/img/cover/XXTCL.jpg","id":"70","issnPpub":"1007-8827","publisherId":"XXTCL","title":"新型炭材料"},"keywords":[{"id":"4a2366eb-662f-429d-8854-8142c9fdb606","keyword":"碳纳米管","originalKeyword":"碳纳米管"},{"id":"28637962-0229-431c-93c6-0ea37d763831","keyword":"催化剂","originalKeyword":"催化剂"},{"id":"fe4c46ed-b16b-4fa0-a39b-7d18697e6a82","keyword":"爆炸法","originalKeyword":"爆炸法"}],"language":"zh","publisherId":"xxtcl200401001","title":"催化剂对爆炸合成碳纳米管的影响","volume":"19","year":"2004"},{"abstractinfo":"研究新合成方法下得到超硬材料C3N4,利用黑索今(RDX)炸药作为高温、高压源,以双氰胺(C2H4N4)为主要前驱体. 通过扫描电子显微镜(SEM)、X射线衍射分析仪(XRD)、X射线能谱分析仪(EDS)及红外光谱仪(FTIR)分别对输出压力为16GPa时制得样品的结构、形貌、价键特性和元素组成进行了分析与表征. 结果表明,XRD测试数据与理论计算值相符很好,样品中同时含有α、β、石墨相C3N4以及晶间相;样品中C、N元素质量比为1.00∶2.98,两种元素主要以CN形式成键;利用扫描电子显微镜观测到线度为2μm的六边形β-C3N4晶粒. 采用爆炸冲击合成方法合成出多晶C3N4粉末, 并对其合成机理进行了讨论.","authors":[{"authorName":"于雁武","id":"a8c58cf9-b256-4054-ac8c-eeb14183f08f","originalAuthorName":"于雁武"},{"authorName":"刘玉存","id":"f93b22be-dcc3-48a3-bd5d-b6d2de8ca450","originalAuthorName":"刘玉存"},{"authorName":"张海龙","id":"550677c0-47cc-4be8-9009-a3ccea037e32","originalAuthorName":"张海龙"},{"authorName":"陈翠翠","id":"f9242a8c-7cdb-4c21-898f-e8a44b84e205","originalAuthorName":"陈翠翠"}],"categoryName":"|","doi":"10.3724/SP.J.1077.2009.00627","fpage":"627","id":"aa85a931-65f6-429a-92c4-6a009014efcf","issue":"3","journal":{"abbrevTitle":"WJCLXB","coverImgSrc":"journal/img/cover/WJCLXB.jpg","id":"62","issnPpub":"1000-324X","publisherId":"WJCLXB","title":"无机材料学报"},"keywords":[{"id":"d58e666f-0c12-4d30-92f3-3f6a9397b34d","keyword":"冲击波","originalKeyword":"冲击波"},{"id":"b63e15d7-a5ac-47e3-92bd-f440a633af05","keyword":" synthesis","originalKeyword":" synthesis"},{"id":"d2880dc9-4412-45e4-a8fa-d0b39cdcd737","keyword":" polycrystalline","originalKeyword":" polycrystalline"},{"id":"d706fc09-1830-43b2-a226-35fcf8ba4799","keyword":" C3N4","originalKeyword":" C3N4"}],"language":"zh","publisherId":"1000-324X_2009_3_1","title":"爆炸冲击合成多晶C3N4的研究","volume":"24","year":"2009"},{"abstractinfo":"研究新合成方法下得到超硬材料C3N4,利用黑索今(RDX)炸药作为高温、高压源,以双氰胺(C2H4N4)为主要前驱体. 通过扫描电子显微镜(SEM)、X射线衍射分析仪(XRD)、X射线能谱分析仪(EDS)及红外光谱仪(FTIR)分别对输出压力为16GPa时制得样品的结构、形貌、价键特性和元素组成进行了分析与表征. 结果表明,XRD测试数据与理论计算值相符很好,样品中同时含有α、β、石墨相C3N4以及晶间相;样品中C、N元素质量比为1.00 ∶ 2.98,两种元素主要以C N形式成键;利用扫描电子显微镜观测到线度为2μm的六边形β- C3N4晶粒. 采用爆炸冲击合成方法合成出多晶C3N4粉末, 并对其合成机理进行了讨论.","authors":[{"authorName":"于雁武","id":"40ba42c7-c8f2-4868-91d2-1626688413f9","originalAuthorName":"于雁武"},{"authorName":"刘玉存","id":"9dd62dda-490b-4941-811b-466bc5c37440","originalAuthorName":"刘玉存"},{"authorName":"张海龙","id":"fc0b44b4-3b03-4838-9b20-5095e2996d9c","originalAuthorName":"张海龙"},{"authorName":"陈翠翠","id":"333a3bbe-2045-47a9-a5d9-989e232c700e","originalAuthorName":"陈翠翠"}],"doi":"10.3724/SP.J.1077.2009.00627","fpage":"627","id":"1126b333-9060-4c75-b1f4-014182e78e33","issue":"3","journal":{"abbrevTitle":"WJCLXB","coverImgSrc":"journal/img/cover/WJCLXB.jpg","id":"62","issnPpub":"1000-324X","publisherId":"WJCLXB","title":"无机材料学报"},"keywords":[{"id":"a69eba2e-61d4-4195-b43b-ebfb6eeecf25","keyword":"冲击波","originalKeyword":"冲击波"},{"id":"61993422-a674-40cd-8379-503ff22bd16f","keyword":"合成","originalKeyword":"合成"},{"id":"18cfe849-578b-4cc1-ab98-6b903c01c722","keyword":"多晶","originalKeyword":"多晶"},{"id":"8ee90322-8d09-4bd4-8cac-bd8dd08bbce6","keyword":"C3N4","originalKeyword":"C3N4"}],"language":"zh","publisherId":"wjclxb200903043","title":"爆炸冲击合成多晶C3N4的研究","volume":"24","year":"2009"},{"abstractinfo":"采用机械合金化工艺由Cu、Cr粉按重量比各半合成CuCr预合金粉,然后用爆炸压实工艺制备真空断路器用电触点材料CuCr合金.着重研究了爆炸压实工艺参数对CuCr预合金粉爆炸压实的影响.结果表明:采用不同的爆炸工艺参数,都能爆炸成型得到密度超过相对理论密度(92%)的CuCr合金;另外,双管装置优于单管装置;提高装粉密度对爆炸成型有利.随着装药密度、药粉比或药粉筒比的增加,爆炸坯密度先逐渐提高,而后减小;球磨时间对爆炸坯密度影响较为复杂.","authors":[{"authorName":"罗守靖","id":"0d381376-f928-4f08-bcb4-1b558b1ae45d","originalAuthorName":"罗守靖"},{"authorName":"李金平","id":"429ee0ec-cbbc-4c66-806d-18477feb97d4","originalAuthorName":"李金平"},{"authorName":"牛玮","id":"ba622574-d249-4967-9e41-5919cde4b896","originalAuthorName":"牛玮"},{"authorName":"胡伟晔","id":"a6da22a4-5003-48a6-b218-60a20ab6ab63","originalAuthorName":"胡伟晔"},{"authorName":"龚朝辉","id":"4bf6cfa2-2183-416d-9f5d-cdeba91032f8","originalAuthorName":"龚朝辉"}],"doi":"10.3969/j.issn.1004-244X.2001.03.007","fpage":"25","id":"b2088640-1f4d-4442-87f9-73d98539fd12","issue":"3","journal":{"abbrevTitle":"BQCLKXYGC","coverImgSrc":"journal/img/cover/BQCLKXYGC.jpg","id":"4","issnPpub":"1004-244X","publisherId":"BQCLKXYGC","title":"兵器材料科学与工程 "},"keywords":[{"id":"794cc3cb-7db3-4652-876c-5c1205314766","keyword":"机械合金化","originalKeyword":"机械合金化"},{"id":"1990bf88-374b-4c86-a203-664064064d84","keyword":"CuCr合金","originalKeyword":"CuCr合金"},{"id":"0af3851f-88e3-4182-9a7e-861afdbfb8a8","keyword":"爆炸压实","originalKeyword":"爆炸压实"},{"id":"518e3b92-2f39-43c2-8645-2f506b07a313","keyword":"密度","originalKeyword":"密度"}],"language":"zh","publisherId":"bqclkxygc200103007","title":"爆炸压实CuCr合金工艺的研究","volume":"24","year":"2001"},{"abstractinfo":"对爆炸喷涂工艺的基本原理进行了深入分析, 爆轰波的特性决定了爆炸喷涂设备枪体的长度在1 m左右,指出了燃烧气体的化学组成、喷枪结构和喷涂距离对爆炸喷涂层质量的重要影响.","authors":[{"authorName":"唐建新","id":"a8869472-15d9-44b3-8fc9-61f23fa9a5f4","originalAuthorName":"唐建新"},{"authorName":"张爱斌","id":"2313ed8f-67d8-42b8-a47f-2eb7b03f962a","originalAuthorName":"张爱斌"},{"authorName":"陈建平","id":"091d6e0b-d513-4ede-8aea-f4737ddc0df1","originalAuthorName":"陈建平"},{"authorName":"米青田","id":"a21641dd-1265-4c7e-a5dd-c160fd88af06","originalAuthorName":"米青田"}],"doi":"10.3969/j.issn.1001-1560.2000.09.019","fpage":"33","id":"50c0d987-4813-4a23-82e7-7f5f7bc808ae","issue":"9","journal":{"abbrevTitle":"CLBH","coverImgSrc":"journal/img/cover/CLBH.jpg","id":"7","issnPpub":"1001-1560","publisherId":"CLBH","title":"材料保护"},"keywords":[{"id":"25d3beff-315f-4640-afb7-323f53592c84","keyword":"爆炸喷涂","originalKeyword":"爆炸喷涂"},{"id":"e86add71-db11-4eeb-b723-41e7cf5b05c8","keyword":"爆轰波","originalKeyword":"爆轰波"},{"id":"a59bd4fa-e582-438b-bf71-b8092c7512fd","keyword":"原理","originalKeyword":"原理"}],"language":"zh","publisherId":"clbh200009019","title":"爆炸喷涂工艺原理分析","volume":"33","year":"2000"},{"abstractinfo":"利用机械合金化法制取W/Cu合金化粉末.预压合金粉末在不同温度下通氢还原,将还原后的合金粉末在直接爆炸压制成型的装置中进行爆炸固结,爆炸固结样品相对密度最高达到了98.1%.研究了粉体的还原温度对固结体致密度的影响.分析了样品的微观结构,对样品做EPMA、断口SEM观察以及维氏硬度、电导率的测量.结果表明,W/Cu合金化粉末在爆炸冲击波作用下能够结合成高致密体,合金材料具有高硬度、组织均匀的特点,物理性能良好.","authors":[{"authorName":"王占磊","id":"063a8335-ed64-4e13-b84f-991f72b76669","originalAuthorName":"王占磊"},{"authorName":"李晓杰","id":"28e0bf2e-c405-4441-973d-bfa79dd11ef1","originalAuthorName":"李晓杰"},{"authorName":"莫非","id":"49ec519a-cd2f-45d4-b5d4-efb92f95f949","originalAuthorName":"莫非"},{"authorName":"曹景祥","id":"bf1be05f-83ca-4208-93f5-e20f4b60b97f","originalAuthorName":"曹景祥"},{"authorName":"赵春风","id":"2625a44d-3296-484e-89e6-804f5f7eeb84","originalAuthorName":"赵春风"},{"authorName":"王立鹤","id":"d494d783-0034-4bb1-8b97-b34ff9148e87","originalAuthorName":"王立鹤"}],"doi":"","fpage":"105","id":"a5df2d54-dda8-4d80-ac26-d2082b171fe4","issue":"z1","journal":{"abbrevTitle":"GNCL","coverImgSrc":"journal/img/cover/GNCL.jpg","id":"33","issnPpub":"1001-9731","publisherId":"GNCL","title":"功能材料"},"keywords":[{"id":"c171538d-16dd-4687-9355-4beb14e79a49","keyword":"爆炸固结","originalKeyword":"爆炸固结"},{"id":"a94f6070-70e9-4df0-9075-643c1e71d71e","keyword":"W/Cu合金","originalKeyword":"W/Cu合金"},{"id":"b5cc7211-a166-4b33-942c-a3be4d834273","keyword":"致密度","originalKeyword":"致密度"},{"id":"71b87638-cd0b-413e-bc24-3ca03f6b6c09","keyword":"硬度","originalKeyword":"硬度"}],"language":"zh","publisherId":"gncl2010z1026","title":"爆炸粉末固结W/Cu合金的工艺研究","volume":"41","year":"2010"}],"totalpage":2212,"totalrecord":22116}