欢迎登录材料期刊网

材料期刊网

高级检索

  • 论文(1)
  • 图书()
  • 专利()
  • 新闻()

基于粒子群的支持向量机图像识别

韩晓艳 , 赵东

液晶与显示 doi:10.3788/YJYXS20173201.0069

为了实现对田间水稻缺素的精准识别,构建一个图像识别系统.对该系统所采用的图像采集、图像分割、基于支持向量机图像分类等算法进行研究.首先,根据田间水稻的缺素现象进行图像采集和处理.然后提取图像与氮元素相关的颜色特征.在分析比较 SVM 算法对图像分割的基础上,提出一种基于改进粒子群算法进行 SVM 参数优化算法模型(即 IPSO-SVM).最后,对实验进行设置,对算法模型与其他算法进行测试对比.实验结果表明:对水稻缺素诊断的准确率达到95.45%,基本满足田间水稻缺素的科学诊断要求.

关键词: 图像分割 , 支持向量机 , 粒子群 , 缺素

出版年份

刊物分类

相关作者

相关热词