章艳
,
高保娇
,
王蕊欣
催化学报
在溶液聚合体系中,将聚甲基丙烯酸缩水甘油酯(PGMA)接枝在硅胶微粒表面,制备了接枝微粒PGMA/SiO2;通过环氧键的开环反应,实现了Meso-四(对羟基苯基)卟啉(THPP)在PGMA/SiO2上的键合,制备了键合有羟基苯基卟啉(HPP)的HPP-PGMA/SiO2;进一步使锰盐与HPP-PGMA/SiO2发生配位反应,制备了固载MnP (锰卟啉)-PGMA/SiO2催化剂.以分子氧为氧源,将MnP-PGMA/SiO2催化剂用于乙苯氧化反应,常压下实现了乙苯向苯乙酮的转化,并探索了乙苯氧化过程中的若干规律.结果表明,MnP-PGMA/SiO2催化剂能有效活化分子氧,显著催化乙苯氧化为苯乙酮的反应过程;于95 ℃常压下反应 12 h,苯乙酮收率接近18%,产物α-甲基苄醇的含量则极少.在催化氧化体系中,作为仿生催化剂的MnP存在最适宜用量,过量的MnP反而会抑制催化剂活性.在PGMA/SiO2表面,MnP的固载密度越小,催化剂的活性越高.在循环使用中,催化剂的活性呈升高的趋势.
关键词:
聚甲基丙烯酸缩水甘油酯
,
硅胶
,
接枝聚合
,
锰卟啉
,
负载型催化剂
,
乙苯
,
氧化
,
苯乙酮
张梁
,
郭长昊
,
李晓芳
,
宫希杰
,
叶妮雅
,
李海英
,
雷良才
涂料工业
以2-(十二烷基三硫代碳酸酯)-2-甲基丙烯酸为链转移剂,利用RAFT/细乳液联合技术合成了相对分子质量分布较窄(PDI=1.53)的大分子链转移剂聚甲基丙烯酸缩水甘油酯.再以该大分子为可逆加成-断裂链转移(RAFT)试剂,通过连续加料的方式加入苯乙烯后进一步引发聚合,得到PGMA-b-PS二嵌段共聚物.采用GPC、FT-IR、1H-NMR、DSC等方法对聚合产物进行了表征.结果表明:合成的聚合物为线型二嵌段共聚物,相对分子质量分布为1.87,该聚合过程具有活性/可控特征.DSC测得二嵌段共聚物具有2个玻璃化转变温度(Tg),分别为77.33℃和98.30℃.此外,还考察了单体加料顺序对聚合过程的影响.
关键词:
可逆加成-断裂链转移(RAFT)自由基聚合
,
细乳液聚合
,
嵌段共聚物
,
聚苯乙烯
,
聚甲基丙烯酸缩水甘油酯
余依玲
,
高保娇
,
李艳飞
催化学报
doi:10.1016/S1872-2067(12)60651-2
以甲基丙烯酸缩水甘油酯(GMA)为单体,以乙二醇二甲基丙烯酸酯(EGDMA)为交联剂,采用悬浮聚合法制得交联聚甲基丙烯酸缩水甘油酯(CPGMA)微球,然后以4-羟基-2,2,6,6-四甲基哌啶氮氧自由基(4-OH-TEMPO)为试剂,使CPGMA微球表面的环氧基团发生开环反应,从而制得了TEMPO固载化微球TEMPO/CPGMA,考察了制备条件对固载化反应的影响,并采用多种方法对微球TEMPO/CPGMA进行了表征.将微球TEMPO/CPGMA与CuC1组成共催化体系,用于分子氧氧化苯甲醇,考察了反应条件对催化体系性能的影响.结果表明,以含环氧基团的聚合物微球CPGMA为载体,通过开环反应,可成功地实现TEMPO的固载化,开环反应属SN2亲核取代反应,适宜采用溶剂N,N'-二甲基甲酰胺和反应温度85℃.非均相催化剂TEMPO/CPGMA与助催化剂CuC1构成共催化体系,在室温、常压O2条件下可高效地将苯甲醇氧化为苯甲醛,产物选择性和产率分别为100%和90%.主催化剂TEMPO与助催化剂CuC1适宜的摩尔比为1:1.2;主催化剂适宜用量为0.90g.此外,TEMPO/CPGMA固体催化剂具有良好的循环使用性能.
关键词:
聚甲基丙烯酸缩水甘油酯
,
氮氧自由基
,
固载
,
醇氧化
,
分子氧
王蕊欣
,
高保娇
高分子材料科学与工程
采用甲基丙烯酸缩水甘油酯对Al2O3颗粒进行接枝改性,制备了接枝微粒,考察了PGMA/A12O3对环氧电子灌封材料力学性能的影响,并利用扫描电镜观察了环氧灌封材料经PGMA/A12O3填充前后的冲击断面的形貌变化.研究结果表明,经接枝改性后,接枝微粒PGMA/A12O3对环氧灌封材料的力学性能起到了明显的改善作用:PGMA/A12O3对环氧灌封料的增韧效果明显优于未改性的A12O3,且随PGMA/A12O3填充量的增大,冲击韧性先增大后减小,在填充量较小(0.7%)时,冲击韧性最大;屈服强度也随PGMA/A12O3的加入出现一最佳值;并随接枝微粒PGMA/Al2O3的接枝率的增加,其冲击韧性和屈服强度明显增大.
关键词:
接枝改性
,
氧化铝
,
聚甲基丙烯酸缩水甘油酯
,
环氧树脂
,
增强增韧
高保娇
,
张利琴
,
陈涛
催化学报
doi:10.1016/S1872-2067(15)60902-0
醇氧化为羰基化合物是有机合成工业中最重要的化学转变之一,在实验室研究和精细化工生产中都占有非常重要的地位.使用传统的化学计量强氧化剂(如CrO3, KMnO4, MnO2等),不但成本高及反应条件苛刻,还会产生大量污染环境的废弃物.因此,需要大力发展高效、绿色化的醇转变为羰基化合物的氧化途径.以2,2,6,6-四甲基哌啶氮氧自由基(TEMPO)为催化剂,分子氧为氧化剂,可在温和条件下绿色化地实现醇的氧化转变.该催化氧化作用的实质是TEMPO经过单电子氧化过程转化为相应的氮羰基阳离子,该阳离子是一个具有强氧化性的氧化剂,可将伯醇和仲醇分别快速地、高转化率、高选择性地氧化为对应的醛或酮.然而,目前使用的TEMPO大多为均相催化剂,虽然表现出良好的催化活性和选择性,但反应后难以分离回收,不能再循环使用,严重制约着这一催化体系的发展.本文将TEMPO化学键合在聚合物载体上,在非均相催化剂的作用下,以期实现环已醇的分子氧氧化,将其转变为环已酮.首先采用悬浮聚合法,制备了交联聚甲基丙烯酸缩水甘油酯(CPGMA)微球,该聚合物微球表面含有大量环氧基团,为实现TEMPO的固载化提供了条件.以4-羟基-2,2,6,6-四甲基哌啶氮氧自由基(4-OH-TEMPO)为试剂,使CPGMA微球表面的环氧基团发生开环反应,从而将TEMPO键合于微球表面,制得了固载有TEMPO的聚合物微球TEMPO/CPGMA.将此非均相催化剂与Fe(NO3)3组成共催化体系,应用于分子氧氧化环己醇的催化氧化过程,深入考察了该共催化体系的催化性能,并探索研究了催化氧化机理,考察了主要条件对催化氧化反应的影响.结果表明,共催化体系TEMPO/CPGMA+Fe(NO3)3可以有效地催化分子氧氧化环己醇的氧化过程,将环己醇转化为唯一的产物环己酮,显示出良好的催化选择性.助催化剂Fe(NO3)3化学结构中的Fe3+离子和NO3–离子两种物种均参与催化过程,共同发挥助催化剂的作用,伴随着两种价态铁物种Fe(Ⅱ)与Fe(Ⅲ)的转变以及NO3–与NO2–之间的转变,固载化的氮氧自由基TEMPO不断地转变为氮羰基阳离子,该氧化剂物种使环己醇的氧化反应不断地循环进行.对于共催化体系TEMPO/CPGMA+Fe(NO3)3的使用,适宜的反应条件为TEMPO与Fe(NO3)3的摩尔比为1:1,55°C,通入常压O2.反应35 h,环己酮的转化率可达到44.1%.因此,在温和条件下,使用固载化的TEMPO,有效地实现了环己醇向环己酮的转化.此外,固载化催化剂TEMPO/CPGMA在循环使用过程中表现出良好的重复使用性能.
关键词:
氮氧自由基
,
聚甲基丙烯酸缩水甘油酯
,
固载化
,
组合催化剂
,
环己醇氧化
,
分子氧
雷青娟
,
张正国
,
高保娇
,
安富强
,
代新
,
万敏
,
高建峰
高分子材料科学与工程
将对羟基苯磺酸钠(SHBS)接枝到PGMA/SiO2微粒的聚甲基丙烯酸缩水甘油酯(PGMA)大分子链上,成功地制备出一种新型的磺酸型螯合吸附材料SHBS-PGMA/SiO2,研究了其对Cd(Ⅱ)的吸附行为.结果表明,SHBS-PGMA/SiO2对Cd(Ⅱ)有很强的螯合吸附能力,吸附容量可以达到0.40mmol/g.吸附行为符合Langmuir与Freundlich吸附模型和准二级动力学方程式,并分别计算了吸附过程的焓变(△H)、吉布斯自由能变(△G)和熵变(△S)等热力学参数.结果表明,该吸附过程是自发的吸热过程.
关键词:
螯合吸附
,
重金属离子
,
对羟基苯磺酸钠
,
聚甲基丙烯酸缩水甘油酯
曹林交
,
高保娇
,
胡伟民
应用化学
doi:10.3724/SP.J.1095.2014.40070
采用巯基/偶氮二异丁腈(AIBN)表面引发体系,实现了甲基丙烯酸缩水甘油酯(GMA)在微米级硅胶微粒表面的引发接枝聚合,制得接枝微粒PGMA/SiO2;然后使接枝大分子PGMA的环氧基团与间二氨基苯磺酸钠(SAS)分子中的对位氨基发生开环反应,将苯磺酸钠基团键合在接枝大分子侧链,制得苯磺酸盐功能化的接枝微粒SAS-PGMA/SiO2.在对功能微粒SAS-PGMA/SiO2与苦参碱分子间的相互作用进行考察研究的基础上,以戊二醛为交联剂,实施了苦参碱分子的表面印迹,制备了苦参碱分子表面印迹材料MIP-SASP/SiO2.实验结果表明,在近中性溶液中,功能接枝微粒SAS-PGMA/SiO2与苦参碱分子间存在静电相互作用,以此为基础所设计与制备的表面印迹材料MIP-SASP/SiO2对苦参碱分子具有特异的识别选择性与优良的结合亲和性.相对于对照物金雀化碱而言,该印迹材料对苦参碱的识别选择性系数为10.7.
关键词:
聚甲基丙烯酸缩水甘油酯
,
硅胶
,
分子表面印迹
,
苦参碱
,
分子识别