苏小钢
,
姚颖方
,
田娟
,
刘建国
,
汪忠伟
,
尤勇
,
黄林
,
吴聪萍
催化学报
doi:10.1016/S1872-2067(15)61063-4
近年来,氮掺杂的碳材料作为碱性氧还原催化剂得到了研究者的广泛关注.掺杂的 N原子会影响 C原子的自旋密度和电荷分布,导致碳材料表面产生“活性位点”,因此掺氮碳材料具有优秀的氧还原活性,这已经在理论计算和实验中得到了验证.我们通过调节聚对苯二胺和碳黑的比例,之后进行热解制备了一系列掺氮碳材料.其中0.88PpPD/CB样品具有最好的氧还原活性,其在 KOH溶液(0.1 mol/L)中的氧还原性能超过了商业碳载铂.通过扫描电子显微镜表征,发现碳球聚集在聚对苯二胺的表面,这主要是因为聚对苯二胺没有进行酸掺杂,因此其水溶性比较差.通过氮气的吸脱附表征,发现聚对苯二胺的比表面积很小,而碳黑样品(BP2000)的比表面积很大.因此,随着聚对苯二胺量的增加,聚对苯二胺/碳黑复合物的比表面积逐渐降低.另外,聚对苯二胺表面几乎都是微孔,而介孔和大孔主要来自于碳黑.研究者认为,“活性位点”主要位于微孔内(聚对苯二胺表面),而介孔和大孔有利于物质的传输.因此,当聚对苯二胺和碳黑的比例合适时,既有大量的“活性位点”暴露,又有足够的介孔和大孔进行物质传输,所以0.88PpPD/CB样品的氧还原活性最高.
但是,对于掺氮碳材料来说,一个主要的问题就是稳定性不足.不管是电化学稳定性,还是放置在空气中的稳定性,掺氮碳材料都比不上铂基催化剂,这也阻碍了它们的大规模应用.对于电化学稳定性,很多文章都进行了报道,但是很少有文章报道掺氮碳材料在空气中的稳定性.我们知道,铂基材料之所以具有优异的氧还原活性,是因为铂和氧气的结合能比较合适,既利于氧气吸附,也利于之后氧气分子键的断裂.但是,当铂基材料放置在空气中,氧气的吸附也会发生,而且之后会导致表面氧化层的形成.所以铂基材料需要活化才能达到最好的催化性能.对于掺氮碳材料,放置在空气中会不会发生氧化反应?这对氧还原活性是否有影响?为了研究掺氮碳材料在空气中的稳定性,我们将0.88PpPD/CB样品在空气中放置了一个月,之后再进行电化学测试.旋转圆盘电极测试表明,在空气中放置了一个月后,0.88PpPD/CB样品的氧还原活性降低了,不管是半波电位还是极限电流密度都下降了.之后我们对其进行了 X射线光电子能谱检测,发现在空气中放置了一个月后其氧含量提高了1%(原子分数),而氮含量几乎没有变化.氧含量的提高证实了氧化反应的发生,但不能直接归结于空气中的氧气.为了排除其他因素,如水蒸气、二氧化碳等,当热处理完成,管式炉温度低于100°C时,我们将高纯氮气切换为高纯氧气,一个小时后再取出样品.电化学测试表明,在氧气中暴露了一个小时后,0.88PpPD/CB样品的氧还原活性极大地降低了,而且 X射线光电子能谱表明其氧含量提高了一倍,接近12%.因此,我们证实了氧气会和0.88PpPD/CB样品反应,导致样品的氧还原活性降低.所以,对于未来掺氮碳材料的大规模应用,要考虑其在空气中的稳定性,以及如何避免和氧气接触.
关键词:
苯二胺
,
炭黑
,
复合结构
,
氧气还原反应
,
稳定性