{"currentpage":1,"firstResult":0,"maxresult":10,"pagecode":5,"pageindex":{"endPagecode":5,"startPagecode":1},"records":[{"abstractinfo":"采用熔体发泡法制备孔隙率为71.5%~72.5%、结构均匀的泡沫Al-0.2Sc-0.17Zr合金.研究结构、胞壁显微组织以及等时时效对其压缩和能量吸收性能的影响.结果表明:泡沫合金的孔径约为1 mm,且多呈球形;初生Al3(Zr,Sc,Ti)相具有层状结构,并能有效细化铸态晶粒(尺寸约为50 μm);在200~600℃等时时效过程中,泡沫试样的压缩性能随温度升高呈现先升高后下降的趋势,325和425℃分别表现出由Sc和Zr大量析出引起的两个明显的强度峰;时效至425℃时试样的能量吸收能力最强,且峰值时效附近的试样能量吸收效率均得到提高,高效阶段更持久;TEM实验结果表明,时效至425℃的泡沫试样胞壁中弥散分布着大量细小、共格的二次Al3(Sc,Zr,Ti)相,其粒径为2.1~4.1 nm,这些相能钉扎晶界,阻碍位错运动,因而能显著提高泡沫合金的压缩和吸能性能.","authors":[{"authorName":"黄粒","id":"d9963342-2200-4de8-838f-04cdf724b43c","originalAuthorName":"黄粒"},{"authorName":"杨东辉","id":"feb621f3-2d26-4e13-8404-1da58fe5659a","originalAuthorName":"杨东辉"},{"authorName":"王辉","id":"be6c6a85-17f4-436d-b1ab-4ad03bfc962b","originalAuthorName":"王辉"},{"authorName":"叶丰","id":"62e62fb7-c6ea-4f20-a4e3-d3bfddc1223c","originalAuthorName":"叶丰"},{"authorName":"吕昭平","id":"9a373e6e-2c33-4379-8f1d-8f64ce81eb08","originalAuthorName":"吕昭平"}],"doi":"","fpage":"718","id":"3895e169-a9d3-4a6c-8aa7-0f551f61f354","issue":"3","journal":{"abbrevTitle":"ZGYSJSXB","coverImgSrc":"journal/img/cover/ZGYSJSXB.jpg","id":"88","issnPpub":"1004-0609","publisherId":"ZGYSJSXB","title":"中国有色金属学报"},"keywords":[{"id":"04500c80-9daf-46b3-9040-ce7b63335ab3","keyword":"泡沫合金","originalKeyword":"闭孔泡沫铝钪锆合金"},{"id":"a0f31ace-0ce9-4a5f-b727-314723ec1b61","keyword":"压缩性能","originalKeyword":"压缩性能"},{"id":"64191ac5-cd97-4b4b-a3f0-9060c1b8dab3","keyword":"能量吸收","originalKeyword":"能量吸收"},{"id":"b7b8e078-a911-4106-8068-42443f3a4380","keyword":"纳米析出相","originalKeyword":"纳米析出相"}],"language":"zh","publisherId":"zgysjsxb201403018","title":"元素增强泡沫合金的压缩和吸能性能","volume":"24","year":"2014"},{"abstractinfo":"采用隔热测试仪研究了泡沫的孔隙率和孔径对其导热性能(导热系数)的影响.结果表明:泡沫的导热性能受传导、对流、辐射三者的综合影响;孔隙率为83.2%~91.0%的泡沫的导热系数随孔隙率的增大而减小,而孔径对导热系数的影响没有一定规律;在孔隙率为83.2%~91.0%、孔径为2.5~5.3 mm时,泡沫的导热系数在常温下为0.297~0.752 W/(m·K).","authors":[{"authorName":"赵军","id":"b2e97bd2-bc5b-450d-a28a-fbc4a7a43f9e","originalAuthorName":"赵军"},{"authorName":"何德坪","id":"4f256b48-e126-4451-946f-2f551d0b2c1d","originalAuthorName":"何德坪"}],"doi":"","fpage":"76","id":"6dd13d4e-4fb2-4d6e-88f8-995606de6c75","issue":"4","journal":{"abbrevTitle":"JXGCCL","coverImgSrc":"journal/img/cover/JXGCCL.jpg","id":"45","issnPpub":"1000-3738","publisherId":"JXGCCL","title":"机械工程材料"},"keywords":[{"id":"6f9653e3-428a-45a2-8f4c-09fab6fe4534","keyword":"泡沫","originalKeyword":"闭孔泡沫纯铝"},{"id":"8e480b86-8747-455c-b1d0-9c4032960258","keyword":"孔隙率","originalKeyword":"孔隙率"},{"id":"377fd474-4624-4759-b7fa-5d6986aaf477","keyword":"导热系数","originalKeyword":"导热系数"}],"language":"zh","publisherId":"jxgccl200904021","title":"泡沫的导热性能","volume":"33","year":"2009"},{"abstractinfo":"研究了孔隙率、孔径对泡沫合金导热系数的影响, 结果表明, 由于大量孔洞的存在, 泡沫的导热系数较同样成分的实体材料显著下降, 低孔隙率在0.80—0.93范围内, 约为实体材料的1/30—1/80, 随着孔隙率的增加, 导热系数迅速下降, 而孔径对泡沫的导热系数影响不大. 从串-并联和并-串联模型出发, 分析了孔隙率对泡沫铝材料导热系数的影响, 发现串-并联模型更能反映泡沫的结构特征, 与实测值吻合更好.","authors":[{"authorName":"凤仪","id":"bf885a68-d966-4b0b-99d7-bf7c5316b7be","originalAuthorName":"凤仪"},{"authorName":"朱震刚","id":"9597d551-89d1-471a-a874-da31001914cd","originalAuthorName":"朱震刚"},{"authorName":"陶宁","id":"3ffc7d72-8857-4d00-9f6f-002aa052eac1","originalAuthorName":"陶宁"},{"authorName":"郑海务","id":"10fcd436-c621-44a7-8b58-0ee4540c68c7","originalAuthorName":"郑海务"}],"categoryName":"|","doi":"","fpage":"817","id":"0e90fc17-bd56-438a-a09d-f49e71c90c9a","issue":"8","journal":{"abbrevTitle":"JSXB","coverImgSrc":"journal/img/cover/JSXB.jpg","id":"48","issnPpub":"0412-1961","publisherId":"JSXB","title":"金属学报"},"keywords":[{"id":"48532361-ccc8-4622-a738-35f98cec6334","keyword":"泡沫","originalKeyword":"闭孔泡沫铝"},{"id":"74d24475-a3b0-4fac-83c5-cb70e2077ab9","keyword":"null","originalKeyword":"null"},{"id":"ea883478-70ba-4942-92e0-451f311e2814","keyword":"null","originalKeyword":"null"},{"id":"a9c93326-2a8b-45a9-9118-5f936225b237","keyword":"null","originalKeyword":"null"}],"language":"zh","publisherId":"0412-1961_2003_8_10","title":"泡沫的导热性能","volume":"39","year":"2003"},{"abstractinfo":"研究了孔隙率、孔径对泡沫合金导热系数的影响,结果表明,由于大量孔洞的存在,泡沫的导热系数较同样成分的实体材料显著下降,孔隙率在0.80-0.93范围内,约为实体材料的1/30-1/80,随着孔隙率的增加,导热系数迅速下降,而孔径对泡沫的导热系数影响不大.从串-并联和并-串联模型出发,分析了孔隙率对泡沫铝材料导热系数的影响,发现串-并联模型更能反映泡沫的结构特征,与实测值吻合更好.","authors":[{"authorName":"凤仪","id":"de63b74f-fcfa-40ed-985b-fa0cbcd1c589","originalAuthorName":"凤仪"},{"authorName":"朱震刚","id":"61c37dca-abad-4e20-a9c2-30bbe03c0a08","originalAuthorName":"朱震刚"},{"authorName":"陶宁","id":"298e2853-ae64-458b-af57-ed60d67221ad","originalAuthorName":"陶宁"},{"authorName":"郑海务","id":"392f16d6-6d3d-47d3-8d5b-a86eade6b786","originalAuthorName":"郑海务"}],"doi":"10.3321/j.issn:0412-1961.2003.08.008","fpage":"817","id":"9431b41f-814b-48c3-b5d6-c3007acd4d6b","issue":"8","journal":{"abbrevTitle":"JSXB","coverImgSrc":"journal/img/cover/JSXB.jpg","id":"48","issnPpub":"0412-1961","publisherId":"JSXB","title":"金属学报"},"keywords":[{"id":"4ac1f16d-fad5-423f-9450-6cd201cad1f2","keyword":"泡沫","originalKeyword":"闭孔泡沫铝"},{"id":"f48c9db7-8aad-4391-9de5-7f86a6b315f4","keyword":"孔隙率","originalKeyword":"孔隙率"},{"id":"6c7f4066-2a7e-4a6c-aef0-f0f91a9b9dca","keyword":"孔径","originalKeyword":"孔径"},{"id":"b42f362a-0285-4247-a126-59b7cf55f060","keyword":"导热系数","originalKeyword":"导热系数"}],"language":"zh","publisherId":"jsxb200308008","title":"泡沫的导热性能","volume":"39","year":"2003"},{"abstractinfo":"利用熔体转移发泡法制备了不同孔隙率(厚度为20mm;孔隙率为67.3%、77.7%、80.4%、88.1%)和不同厚度(孔隙率为79.6%;厚度为10、20、30mm)的泡沫,运用驻波管法对其吸声性能进行了测试,对其吸声机理进行了探讨,并研究了孔隙率和厚度对其吸声性能的影响.结果发现泡沫吸声主要是通过亥姆霍兹共振器结构和壁微孔以及裂缝等来实现的,实验进一步证实其吸声特性曲线符合理论分析.泡沫的孔隙率和厚度对其吸声性能影响显著:吸声系数随孔隙率增加而增加;低频阶段,吸声系数随厚度的增加而提高,高频阶段,吸声系数随厚度的增加而下降,但整体吸声性能受厚度影响较小,只出现了最高吸声系数向低频处迁移的现象.","authors":[{"authorName":"尉海军","id":"c1433a51-26f1-45e3-abea-ed5ebcadf1b1","originalAuthorName":"尉海军"},{"authorName":"姚广春","id":"cc3374e0-1629-4fbd-aae8-a0e920842a75","originalAuthorName":"姚广春"},{"authorName":"王晓林","id":"280061a8-6adc-43d2-9023-2680439bd489","originalAuthorName":"王晓林"},{"authorName":"李兵","id":"225ad5cd-cd0e-42aa-ac17-d973000db05c","originalAuthorName":"李兵"},{"authorName":"尹铫","id":"0d980992-e1a7-4e97-97ee-9b4f791289dc","originalAuthorName":"尹铫"}],"doi":"","fpage":"2014","id":"d5e9bdd7-9d85-4b7b-987b-cdb7dc8f0fe8","issue":"12","journal":{"abbrevTitle":"GNCL","coverImgSrc":"journal/img/cover/GNCL.jpg","id":"33","issnPpub":"1001-9731","publisherId":"GNCL","title":"功能材料"},"keywords":[{"id":"42ec78a6-9f86-4f70-815f-3fd7f7f1d1de","keyword":"泡沫","originalKeyword":"铝硅闭孔泡沫铝"},{"id":"3b75150f-cf3b-4a19-b87d-52acd62590d6","keyword":"吸声系数","originalKeyword":"吸声系数"},{"id":"33e60a3c-400b-4ac7-bad1-9ee046abc6b9","keyword":"机制","originalKeyword":"机制"},{"id":"54fcd4c1-c077-494c-8436-dc8e80807764","keyword":"孔隙率","originalKeyword":"孔隙率"},{"id":"50db7aa8-939b-4935-b928-5764bf8d0eee","keyword":"厚度","originalKeyword":"厚度"}],"language":"zh","publisherId":"gncl200612047","title":"泡沫吸声性能研究","volume":"37","year":"2006"},{"abstractinfo":"采用粉末冶金发泡法制备泡沫,通过调整发泡剂含量、发泡温度、粘度、保温时间等手段,制得孔隙率可调、孔洞分布均匀的泡沫样品,并测试了不同孔隙率、孔径泡沫样品的电磁屏蔽性能.结果表明:在100~1000MHz内,泡沫的电磁屏蔽性能在60~90dB之间,且随着孔隙率、孔径的增加,泡沫的电磁屏蔽性能下降.","authors":[{"authorName":"凤仪","id":"b5721c8d-5a34-47e8-abac-52361a146592","originalAuthorName":"凤仪"},{"authorName":"郑海务","id":"d7160da3-b99a-415f-92cf-c6e286457a0a","originalAuthorName":"郑海务"},{"authorName":"朱震刚","id":"0158b73d-de6c-438e-b639-8104300e2961","originalAuthorName":"朱震刚"},{"authorName":"陶宁","id":"227a29f0-31b9-48f6-b11f-ab37e4d49b5b","originalAuthorName":"陶宁"}],"doi":"","fpage":"33","id":"8a388c65-5d45-4166-bdd5-66882fa7e6a4","issue":"1","journal":{"abbrevTitle":"ZGYSJSXB","coverImgSrc":"journal/img/cover/ZGYSJSXB.jpg","id":"88","issnPpub":"1004-0609","publisherId":"ZGYSJSXB","title":"中国有色金属学报"},"keywords":[{"id":"d0e46ab9-2cb6-4d71-aebe-cfc23ae9860d","keyword":"泡沫","originalKeyword":"闭孔泡沫铝"},{"id":"c6c79e82-9bba-475e-a7c0-2d8d1fbc5ef8","keyword":"孔隙率","originalKeyword":"孔隙率"},{"id":"791b8ceb-cb75-4b02-b92e-d0080502d893","keyword":"孔径","originalKeyword":"孔径"},{"id":"64498f50-d815-4558-b5db-e2df9dbf6741","keyword":"电磁屏蔽","originalKeyword":"电磁屏蔽"}],"language":"zh","publisherId":"zgysjsxb200401007","title":"泡沫的电磁屏蔽性能","volume":"14","year":"2004"},{"abstractinfo":"通过调整发泡温度、发泡时间、保温时间及发泡剂加入量等工艺参数,采用熔体转移发泡法制备不同相对密度的Al-Si泡沫.利用法蓝同轴法测试其电磁屏蔽效能,结果表明:电磁干扰频率对其屏蔽效能影响显著,在10~600MHz范围内,随着干扰频率增加,泡沫屏蔽效能逐渐减小,在600~1500MHz范围内,屏蔽效能又逐渐增加.相对密度对Al-Si泡沫铝材料电磁屏蔽效能影响不大.","authors":[{"authorName":"尉海军","id":"e823dc23-4d15-48c1-9196-30e1cf6e2500","originalAuthorName":"尉海军"},{"authorName":"姚广春","id":"84639a04-da64-4128-920d-720e6af0600b","originalAuthorName":"姚广春"},{"authorName":"李兵","id":"ec6fade5-f14d-417d-926b-bbb4d15e0e64","originalAuthorName":"李兵"},{"authorName":"郭志强","id":"9436560c-416a-4031-8726-9c237872eafd","originalAuthorName":"郭志强"}],"doi":"","fpage":"1239","id":"98704f8f-d0bb-4877-9015-540b1097776d","issue":"8","journal":{"abbrevTitle":"GNCL","coverImgSrc":"journal/img/cover/GNCL.jpg","id":"33","issnPpub":"1001-9731","publisherId":"GNCL","title":"功能材料"},"keywords":[{"id":"c75fd79e-0d9f-46c1-be63-09a949f1e8ab","keyword":"Al-Si","originalKeyword":"Al-Si"},{"id":"bc0e4f92-35ad-480b-9448-3cb118198120","keyword":"泡沫","originalKeyword":"闭孔泡沫铝"},{"id":"94c67769-5fcb-4a05-a402-c82235c29c50","keyword":"电磁屏蔽","originalKeyword":"电磁屏蔽"},{"id":"c37e0eec-dbb3-4efe-9010-ef2587eb233e","keyword":"相对密度","originalKeyword":"相对密度"}],"language":"zh","publisherId":"gncl200608017","title":"Al-Si泡沫电磁屏蔽效能","volume":"37","year":"2006"},{"abstractinfo":"研究了开两种胞结构不同、制备工艺不同的泡沫在准静态压缩载荷下的压缩响应曲线.结果表明:开泡沫压缩应力-应变曲线均具有多孔泡沫材料明显的三阶段特征,即线弹性段、塑性屈服平台段及致密段;相对密度对泡沫材料的力学性能(如杨氏模量、屈服强度)有很大影响;在准静态下,开泡沫表现出明显的应变率效应,而泡沫不如开敏感;泡沫铝材料表现为弱的各向异性;胞结构影响两种泡沫材料的压缩响应曲线.","authors":[{"authorName":"康颖安","id":"6b54a161-8c6e-46f0-90d1-6e4c0ec28ec7","originalAuthorName":"康颖安"},{"authorName":"张俊彦","id":"875db3ee-73c3-47b3-9b54-d260ee70f37f","originalAuthorName":"张俊彦"}],"doi":"","fpage":"122","id":"582142e7-7bfd-47a0-af74-3f75a544a49d","issue":"8","journal":{"abbrevTitle":"CLDB","coverImgSrc":"journal/img/cover/CLDB.jpg","id":"8","issnPpub":"1005-023X","publisherId":"CLDB","title":"材料导报"},"keywords":[{"id":"233d080b-4d10-4863-a706-25d945533724","keyword":"泡沫","originalKeyword":"泡沫铝"},{"id":"6b10c0a5-12d4-47fa-990d-34b3ab06c766","keyword":"压缩应力-应变曲线","originalKeyword":"压缩应力-应变曲线"},{"id":"01cf1ee1-5789-4b53-9266-c1a27dac7f13","keyword":"相对密度","originalKeyword":"相对密度"},{"id":"0577e971-5462-42eb-b92a-8af5f8f34ead","keyword":"应变率效应","originalKeyword":"应变率效应"}],"language":"zh","publisherId":"cldb200508035","title":"开泡沫的压缩力学行为","volume":"19","year":"2005"},{"abstractinfo":"研究了球形泡沫合金在1 MHz~10 MHz的超声衰减性能.结果表明:泡沫合金的超声衰减性能决定于其结构;通泡沫合金的超声衰减系数α随着孔径d的减小、孔隙率Ps减小和比表面积Sv的增加而增大;泡沫合金的超声衰减系数α随孔径d的减小、孔隙率Ps的增加和比表面积Sv的增加而增大;当孔径d、孔隙率Ps相近时,泡沫合金的超声衰减性能优于通泡沫合金;在1 MHz~10 MHz二者是具有良好阻尼性能的轻质材料.其衰减机制为在弹性范围内超声应力波在具有大量孔隙界面的泡沫合金中的衰减.","authors":[],"doi":"","fpage":"407","id":"400d739d-04fd-4894-8a97-b1d0a0031024","issue":"4","journal":{"abbrevTitle":"CLYJXB","coverImgSrc":"journal/img/cover/CLYJXB.jpg","id":"16","issnPpub":"1005-3093","publisherId":"CLYJXB","title":"材料研究学报"},"keywords":[{"id":"c7cbb5be-e58e-4e68-88d9-95db2e2adffc","keyword":"金属材料","originalKeyword":"金属材料"},{"id":"d5f5205f-4950-48ec-a969-cc5a057e4b77","keyword":"通泡沫合金","originalKeyword":"通孔泡沫铝合金"},{"id":"19daa4ef-c905-4a40-bf13-c86a9a1f26d9","keyword":"泡沫合金","originalKeyword":"闭孔泡沫铝合金"},{"id":"3a9061f4-a185-487d-b7ed-b08ac9611e3e","keyword":"超声衰减系数","originalKeyword":"超声衰减系数"},{"id":"528076e7-a16a-485a-9fc7-d4f5457cce03","keyword":"孔径","originalKeyword":"孔径"},{"id":"5babc273-e934-4ee4-8cc4-d013962ff16d","keyword":"孔隙率","originalKeyword":"孔隙率"},{"id":"29294db4-83df-4830-a3dd-1aa128afa88f","keyword":"比表面积","originalKeyword":"比表面积"}],"language":"zh","publisherId":"clyjxb200504012","title":"球形泡沫合金的超声衰减性能","volume":"19","year":"2005"},{"abstractinfo":"在泡沫准静态压缩试验的基础上,研究了其力学性能、吸能能力.结果表明,泡沫单轴压缩应力-应变曲线呈现践弹性变形、塑性平台阶段、致密化阶段3个阶段;泡沫的压缩强度、吸能能力随着孔隙率的增大而减小,采用Gibson-Ashby模型分析泡沫的压缩屈服强度,吻合良好.并在此基础上,提出可供工程使用的多孔泡沫金属吸能能力公式,为其工程应用提供理论支持.","authors":[{"authorName":"王展光","id":"1b07aa86-d485-4957-ac3b-5592682be435","originalAuthorName":"王展光"},{"authorName":"蔡萍","id":"86280f71-7a3a-4b83-b9ce-60a52d397e58","originalAuthorName":"蔡萍"},{"authorName":"应建中","id":"6cdcc991-0d4d-407f-ab9d-bb2b98e5dc8a","originalAuthorName":"应建中"},{"authorName":"李书琴","id":"45be1055-774c-4fac-a91e-ee60c09e21cd","originalAuthorName":"李书琴"},{"authorName":"胡景智","id":"19864b8c-1470-42fb-9e46-c100c6446595","originalAuthorName":"胡景智"}],"doi":"","fpage":"152","id":"335c6826-a0c4-4bde-860e-9dc6b4fb7937","issue":"10","journal":{"abbrevTitle":"CLDB","coverImgSrc":"journal/img/cover/CLDB.jpg","id":"8","issnPpub":"1005-023X","publisherId":"CLDB","title":"材料导报"},"keywords":[{"id":"80726091-62df-400e-b541-f539899a17df","keyword":"泡沫","originalKeyword":"闭孔泡沫铝"},{"id":"a4db9e96-8adb-47e4-b815-809b77a0c665","keyword":"压缩力学性能","originalKeyword":"压缩力学性能"},{"id":"f2551b53-e72e-4f81-809e-ab3e55bb1eaf","keyword":"吸能能力","originalKeyword":"吸能能力"}],"language":"zh","publisherId":"cldb201210042","title":"泡沫的力学性能和吸能能力","volume":"26","year":"2012"}],"totalpage":5296,"totalrecord":52954}