{"currentpage":1,"firstResult":0,"maxresult":10,"pagecode":5,"pageindex":{"endPagecode":5,"startPagecode":1},"records":[{"abstractinfo":"对涡轮叶片尾针肋通道的换热进行了数值模拟研究.为了研究冷却叶片尾处正压面与背压面楔角对换热和流动的影响,在Re=1.0×104~1.0×105进行了稳态湍流三维数值模拟;为了研究冷却叶片尾扰流柱上下两部分在流动方向错位的距离对通道传热和流动的影响,在针肋顺排及Re=2.0×104的情况下进行了稳态湍流三维数值模拟.得出了平行通道最宜被采用以及针肋错位通道中随着针肋错位距离的增加通道的换热和压力损失都增加的结论.","authors":[{"authorName":"凌长明","id":"141cecbc-e304-40a5-b3b3-cb92ed0ff63e","originalAuthorName":"凌长明"},{"authorName":"闵春华","id":"a1c380af-a6ed-4b6e-962c-31d6ca001a7e","originalAuthorName":"闵春华"},{"authorName":"卢聪明","id":"13d13beb-c798-4f5e-8ab8-ab14a80c23aa","originalAuthorName":"卢聪明"},{"authorName":"赵冬梅","id":"6a4cfeda-0562-4d09-8bd9-124f587792d8","originalAuthorName":"赵冬梅"}],"doi":"","fpage":"455","id":"750f5c28-c484-4d91-afab-fd34e90efd7c","issue":"3","journal":{"abbrevTitle":"GCRWLXB","coverImgSrc":"journal/img/cover/GCRWLXB.jpg","id":"32","issnPpub":"0253-231X","publisherId":"GCRWLXB","title":"工程热物理学报 "},"keywords":[{"id":"464d05cb-dd9c-4c1b-a05a-7f7632c20f8a","keyword":"叶片尾","originalKeyword":"叶片尾缘"},{"id":"debde443-43c8-47d7-9c6d-3f6f5e20cd71","keyword":"针肋","originalKeyword":"针肋"},{"id":"2fa34a06-8445-45bd-b6f3-2969787e76a7","keyword":"数值模拟","originalKeyword":"数值模拟"},{"id":"9cafd06f-9408-4e6a-9dcc-01dd05adfd87","keyword":"楔形通道","originalKeyword":"楔形通道"}],"language":"zh","publisherId":"gcrwlxb200303027","title":"楔形通道换热三维数值模拟","volume":"24","year":"2003"},{"abstractinfo":"以一高压比离心压缩机为研究对象,对叶轮叶片尾的压力面和吸力面分别进行切削,采用CFD技术研究了叶片尾切削对叶轮及压缩机性能的影响.研究结果表明,叶片尾切削改变了压力面或吸力面的出口安装角和叶轮出口流场,压力面切削降低叶轮及压缩机级压比,增加压缩机级效率.吸力面切削使叶轮及压缩机级压比增加,但对效率影响很小.压力面和吸力面切削产生的影响均与切削长度和切削厚度有关,存在最佳切削长度和最佳切削厚度.","authors":[{"authorName":"赵会晶","id":"11309c7f-f0ab-4307-ad01-d0275ee8ee5f","originalAuthorName":"赵会晶"},{"authorName":"席光","id":"74be779d-179b-444d-8f36-6ae18620bba5","originalAuthorName":"席光"},{"authorName":"王志恒","id":"d2095f47-9811-48e7-b2e8-931a8be43401","originalAuthorName":"王志恒"},{"authorName":"樊宏周","id":"4a0d175d-c97c-45f2-ab7c-83e8899f72b5","originalAuthorName":"樊宏周"},{"authorName":"孙晔晨","id":"b2a443ab-6b3f-440b-93e4-1b76fbda02da","originalAuthorName":"孙晔晨"}],"doi":"","fpage":"1228","id":"48ecba27-0e40-4bc7-a533-3b3f71ff40b0","issue":"6","journal":{"abbrevTitle":"GCRWLXB","coverImgSrc":"journal/img/cover/GCRWLXB.jpg","id":"32","issnPpub":"0253-231X","publisherId":"GCRWLXB","title":"工程热物理学报 "},"keywords":[{"id":"5bd4e449-fabe-4be8-a2b7-9e63b8f2198f","keyword":"叶片尾切削","originalKeyword":"叶片尾缘切削"},{"id":"bdd24509-712a-4d7c-aca9-36b413772503","keyword":"性能","originalKeyword":"性能"},{"id":"e9c07caf-26c6-45a8-90e1-247a42fc4638","keyword":"切削长度","originalKeyword":"切削长度"},{"id":"25cb6079-880a-4155-98ce-5394090d821a","keyword":"切削厚度","originalKeyword":"切削厚度"}],"language":"zh","publisherId":"gcrwlxb201506014","title":"叶片尾切削对离心压缩机气动性能的影响","volume":"36","year":"2015"},{"abstractinfo":"本文应用湍流模型对涡轮叶片尾针肋通道的换热与流动进行了二维数值模拟研究.为了研究通道内针肋排列方式对换热与流动的影响,对三种不同的针肋排列方式的通道进行了数值模拟计算.比较了顺排和叉排的区别,并提出了一种沿流向叉排的针肋排列方式,且对各种排列的传热和阻力特性进行了综合分析和比较.","authors":[{"authorName":"凌长明","id":"6020153b-513d-415b-95cf-f89da7944ca1","originalAuthorName":"凌长明"},{"authorName":"田丽亭","id":"b6fb3a69-4f63-4e66-b49f-2e22d36bc2eb","originalAuthorName":"田丽亭"},{"authorName":"赵冬梅","id":"ea5d2e70-545e-4416-8c42-3683bfc82fcd","originalAuthorName":"赵冬梅"},{"authorName":"关志强","id":"0a76ffdc-6e59-4147-b088-468b6680f3d4","originalAuthorName":"关志强"}],"doi":"","fpage":"637","id":"5ddedd6a-f4f7-4c55-97f9-820f0b2275d6","issue":"4","journal":{"abbrevTitle":"GCRWLXB","coverImgSrc":"journal/img/cover/GCRWLXB.jpg","id":"32","issnPpub":"0253-231X","publisherId":"GCRWLXB","title":"工程热物理学报 "},"keywords":[{"id":"82e47251-7306-4159-9e56-4389dc186ca7","keyword":"叶片","originalKeyword":"叶片"},{"id":"e2b1e2c6-732b-401b-b6fa-e05bbc2f728d","keyword":"尾","originalKeyword":"尾缘"},{"id":"882c5481-33ca-479c-98ac-23c1d0727e8e","keyword":"针肋","originalKeyword":"针肋"},{"id":"08cd2a09-1b0b-4528-b45d-e65bf7de7afb","keyword":"强化传热","originalKeyword":"强化传热"},{"id":"9ea16d14-cfaa-4c5d-8848-17a30adea1b6","keyword":"数值模拟","originalKeyword":"数值模拟"}],"language":"zh","publisherId":"gcrwlxb200404030","title":"叶片尾内冷通道中最佳强化传热的针肋排列结构研究","volume":"25","year":"2004"},{"abstractinfo":"本文采用单方程S—A湍流模型计算了尾襟翼与主体翼型连接处的凹槽对二维翼型气动特性及流场的影响。选用带有30%弦长固定偏斜20°角度尾襟翼的NACA0015翼型作为研究对象,分析了流场的相关特性。数值计算结果表明:凹槽对于带有尾襟翼的二维翼型气动特性有一定影响,在负攻角及较小正攻角时,减小翼型升力系数;随着攻角增大,出现驻涡或周期性脱落涡,在计算及实际应用中不能忽略该部分细小几何结构的影响;攻角继续增大,分离区覆盖连接处后,凹槽对流场基本没有影响。","authors":[{"authorName":"李传峰","id":"97b761af-e03b-41e4-b5f3-eb594fb90ee7","originalAuthorName":"李传峰"},{"authorName":"徐宇","id":"1c3934f1-8476-4e40-8cc6-35a97cb8b061","originalAuthorName":"徐宇"},{"authorName":"徐建中","id":"f2f6a57f-73c9-4ac8-a22c-3f3df034c6de","originalAuthorName":"徐建中"}],"doi":"","fpage":"1851","id":"24f356c1-e6cc-43d1-9020-72fb2541eaed","issue":"11","journal":{"abbrevTitle":"GCRWLXB","coverImgSrc":"journal/img/cover/GCRWLXB.jpg","id":"32","issnPpub":"0253-231X","publisherId":"GCRWLXB","title":"工程热物理学报 "},"keywords":[{"id":"a4be0c9f-24fc-4b04-8bfe-90dae7c386fe","keyword":"凹槽","originalKeyword":"凹槽"},{"id":"ad01455c-4d2d-4761-afca-3fc257d95fff","keyword":"尾襟翼","originalKeyword":"尾缘襟翼"},{"id":"33210c9a-96da-4d40-8ad7-98bceba020eb","keyword":"智能叶片控制","originalKeyword":"智能叶片控制"}],"language":"zh","publisherId":"gcrwlxb201111013","title":"凹槽对风力机叶片尾襟翼性能的影响","volume":"32","year":"2011"},{"abstractinfo":"依据现有的叶片尾迹宽度计算公式,计算了一空调室外机风机叶片的尾迹宽度,然后,以此尾迹宽度为参考基准,设计了两组不同形状和大小的锯齿形叶片尾,制作并试验研究了锯齿形尾对风机气动噪声的影响规律。结果表明,锯齿尾有明显降噪效果,正弦形锯齿较正三角形更好。锯齿尾通过降低宽频噪声降噪,而对离散噪声影响很小。采用与叶片尾迹宽度相近的尾锯齿尺寸,气动噪声降低效果最为显著。","authors":[{"authorName":"宫武旗","id":"dee41b81-578b-4c23-bc94-c009954707ab","originalAuthorName":"宫武旗"},{"authorName":"王芳","id":"2e99f3d6-f347-4c0d-871a-1d90d4ae49af","originalAuthorName":"王芳"},{"authorName":"田镇龙","id":"0c45f494-5d48-45fd-bfd4-98f66ef8e708","originalAuthorName":"田镇龙"},{"authorName":"韩礼斌","id":"fa06b675-685c-43e4-8215-2f8c204eb1be","originalAuthorName":"韩礼斌"},{"authorName":"付裕","id":"a9ed4da0-e636-43c7-8af6-c61fafbcf281","originalAuthorName":"付裕"}],"doi":"","fpage":"1681","id":"6b04c464-ced9-4323-93ee-8bcece975743","issue":"10","journal":{"abbrevTitle":"GCRWLXB","coverImgSrc":"journal/img/cover/GCRWLXB.jpg","id":"32","issnPpub":"0253-231X","publisherId":"GCRWLXB","title":"工程热物理学报 "},"keywords":[{"id":"575a32fa-907c-4e9d-a82b-fde26a2f7d2b","keyword":"降噪","originalKeyword":"降噪"},{"id":"8b95e429-1c00-4c84-9ee6-b67571c14b99","keyword":"尾锯齿","originalKeyword":"尾缘锯齿"},{"id":"d4596f3d-d24a-4416-b82a-0bc06622330b","keyword":"尾迹宽度","originalKeyword":"尾迹宽度"},{"id":"be26674a-063d-4f0b-b533-fb739c0e3259","keyword":"空调","originalKeyword":"空调"}],"language":"zh","publisherId":"gcrwlxb201110015","title":"叶片锯齿尾对降低空调室外机气动噪声影响的试验研究","volume":"32","year":"2011"},{"abstractinfo":"基于我国对低载轻质高强度风电叶片的需求,本文在荷兰DOWEC叶片的基础上,设计了一种6 MW大厚度钝尾叶片,并基于FOCUS对其结构特性进行了分析.通过控制前后两叶片铺层参数不变,研究了大厚度钝尾外形对叶片载荷与结构的影响,得出提高叶片内侧翼型的相对厚度可以降低其质量与轴向载荷.通过控制叶片外形不变而修改铺层参数,研究了大厚度钝尾外形的铺层特性,得出梁帽厚度是影响该叶片结构强度的最主要铺层参数.最后,基于上述结论改进了大厚度钝尾叶片的铺层设计,并进行了全面的结构特性评估.结果表明与DOWEC叶片相比该叶片实现了载荷降低,质量减轻,结构增强.","authors":[{"authorName":"吴蔚","id":"91f34d34-cb18-447c-b007-b7c0b93ecd60","originalAuthorName":"吴蔚"},{"authorName":"杨科","id":"cbd811c4-76eb-4793-808e-d558955770cb","originalAuthorName":"杨科"},{"authorName":"张磊","id":"0d3d20b2-d310-494d-af38-e53e3ad94d10","originalAuthorName":"张磊"},{"authorName":"刘强","id":"c57b485b-20c3-4f5e-a013-37de10bdecd8","originalAuthorName":"刘强"}],"doi":"","fpage":"1074","id":"d12501b0-09ac-4a95-ac40-057d5edf4587","issue":"6","journal":{"abbrevTitle":"GCRWLXB","coverImgSrc":"journal/img/cover/GCRWLXB.jpg","id":"32","issnPpub":"0253-231X","publisherId":"GCRWLXB","title":"工程热物理学报 "},"keywords":[{"id":"88e9e834-3718-4b4e-93e9-6eaff185104b","keyword":"风力机","originalKeyword":"风力机"},{"id":"2af8bad4-e0d3-4716-8fcb-4b6f9aff8bbe","keyword":"大厚度叶片","originalKeyword":"大厚度叶片"},{"id":"267b52d1-34c1-4e5a-be45-ca85f309cf41","keyword":"钝尾","originalKeyword":"钝尾缘"},{"id":"e0486045-12c2-444c-918f-d90834f4ed9f","keyword":"铺层设计","originalKeyword":"铺层设计"},{"id":"8e0888a5-a40c-42f6-9a76-2b0b26201763","keyword":"安全因子","originalKeyword":"安全因子"}],"language":"zh","publisherId":"gcrwlxb201306017","title":"6MW大厚度钝尾风电叶片结构分析","volume":"34","year":"2013"},{"abstractinfo":"镍基单晶高温合金涡轮叶片板杂晶的出现严重影响叶片的力学性能,导致叶片报废.综述了关于板杂晶的形成本质的研究,总结了不同影响因素对板杂晶形成的影响及原因并概况了几种不同杂晶的控制方法,指出了以往研究中存在的问题,展望了未来研究的方向.","authors":[{"authorName":"李亚峰","id":"8e938c90-50b5-429f-8adf-987397aa32cd","originalAuthorName":"李亚峰"},{"authorName":"刘林","id":"e060fd49-e583-440d-b772-7ab4f6f22115","originalAuthorName":"刘林"},{"authorName":"黄太文","id":"87241956-c5f7-4f9a-9c64-45f585636137","originalAuthorName":"黄太文"},{"authorName":"张军","id":"20d33a9b-c1ab-4d6d-9fae-9c43d9b1125f","originalAuthorName":"张军"},{"authorName":"傅恒志","id":"85e39229-050b-402b-81a6-edb981cfb0af","originalAuthorName":"傅恒志"}],"doi":"10.11896/j.issn.1005-023X.2017.09.016","fpage":"118","id":"a7fb1e3d-e0ba-4c66-be42-bd77bf424e05","issue":"5","journal":{"abbrevTitle":"CLDB","coverImgSrc":"journal/img/cover/CLDB.jpg","id":"8","issnPpub":"1005-023X","publisherId":"CLDB","title":"材料导报"},"keywords":[{"id":"83c90754-2180-4085-bf08-05b3ca5787c9","keyword":"镍基单晶高温合金","originalKeyword":"镍基单晶高温合金"},{"id":"17359504-6dc4-42bb-890c-c0af67af7b15","keyword":"涡轮叶片","originalKeyword":"涡轮叶片"},{"id":"37d01d80-eaac-44fd-a4b5-da9a800c8fba","keyword":"杂晶","originalKeyword":"杂晶"},{"id":"1b788206-80c3-4194-8067-f6a1ecd37c35","keyword":"机理","originalKeyword":"机理"},{"id":"aa91a135-8031-4dd8-8fe7-633ab972d3f4","keyword":"影响因素","originalKeyword":"影响因素"},{"id":"2e2140b5-0aab-48be-8a01-7f6b78405b68","keyword":"控制方法","originalKeyword":"控制方法"}],"language":"zh","publisherId":"cldb201709016","title":"镍基单晶高温合金涡轮叶片板杂晶的研究进展","volume":"31","year":"2017"},{"abstractinfo":"现代风力机叶片的大型化带来了设计和生产方面的诸多问题,叶片的静力实验是分析叶片结构稳定性的重要基础和验证手段.对中国科学院工程热物理研究所研发的100kW大厚度钝尾叶片进行了静力实验研究,分析了叶片在摆振和挥舞方向的屈曲特性和应变特性,通过对静力特性进行分析,探讨了叶片在载荷作用下的刚度及应变等性能特性,比较了叶片相对于传统尖尾叶片的结构性能优点.最后,将失效实验结果同设计值相比较,分析了产生误差的原因.","authors":[{"authorName":"徐立军","id":"e0fa5801-1a77-417b-b40a-da4f61691f11","originalAuthorName":"徐立军"},{"authorName":"徐蕾","id":"ef38a7a2-161b-44f5-86b6-84912e981c5d","originalAuthorName":"徐蕾"},{"authorName":"杨科","id":"3b6911c5-8ace-4923-bad9-1fbb0a153692","originalAuthorName":"杨科"}],"doi":"","fpage":"39","id":"1b36630c-2b32-45ad-aa26-877b9336bd86","issue":"7","journal":{"abbrevTitle":"BLGFHCL","coverImgSrc":"journal/img/cover/BLGFHCL.jpg","id":"6","issnPpub":"1003-0999","publisherId":"BLGFHCL","title":"玻璃钢/复合材料"},"keywords":[{"id":"2a8fd0b7-576f-44d1-9e2e-da59a195ea38","keyword":"钝尾","originalKeyword":"钝尾缘"},{"id":"bd2b393f-d566-46a5-942d-9c834057022d","keyword":"叶片","originalKeyword":"叶片"},{"id":"fc3a4698-ac9e-4a79-a95a-e9b2d6bac50a","keyword":"静力实验","originalKeyword":"静力实验"},{"id":"649c8557-e482-4d81-a14a-b517a64b10e5","keyword":"屈曲","originalKeyword":"屈曲"},{"id":"173d880e-bea5-4557-be77-ba06e15593ec","keyword":"应变","originalKeyword":"应变"}],"language":"zh","publisherId":"blgfhcl201507007","title":"100kW大厚度钝尾叶片的静力实验研究","volume":"","year":"2015"},{"abstractinfo":"本文对大小叶片平面叶栅流动进行了详细的测量,初步分析了大小叶片设计优化规律.大叶片叶栅稠度1.3,小叶片尾与大叶片尾齐平且位于两大叶片尾正中.来流气流马赫数0.3,相应的基于大叶片弦长的雷诺数为7×105.测量结果显示:小叶片的存在降低了大叶片负荷,增强了大叶片抵抗分离的能力;随着攻角的增大,大叶片负载增大,而小叶片负载反而降低;大小叶片叶栅的落后角基本不随来流攻角变化,传统的落后角经验公式将不再适用.","authors":[{"authorName":"王洪伟","id":"203c29a4-d91a-4b52-97f6-73d1a8534d2e","originalAuthorName":"王洪伟"},{"authorName":"蒋浩康","id":"25015c47-554e-4f13-be86-50728e6f097b","originalAuthorName":"蒋浩康"},{"authorName":"陈懋章","id":"b6927b31-d5c4-48fb-9617-232a3b000e39","originalAuthorName":"陈懋章"}],"doi":"","fpage":"113","id":"fb62ddac-f4bc-45b8-889f-500fd2251608","issue":"z1","journal":{"abbrevTitle":"GCRWLXB","coverImgSrc":"journal/img/cover/GCRWLXB.jpg","id":"32","issnPpub":"0253-231X","publisherId":"GCRWLXB","title":"工程热物理学报 "},"keywords":[{"id":"3b180509-00e0-49da-9042-54c9f9daa7d3","keyword":"大小叶片压气机","originalKeyword":"大小叶片压气机"},{"id":"50a696eb-61b5-41ad-ab0e-94f067113bb8","keyword":"平面叶栅","originalKeyword":"平面叶栅"},{"id":"d3ef221b-6e57-444c-a7f2-f67dff869919","keyword":"流场测量","originalKeyword":"流场测量"},{"id":"c520e69e-ff2a-4efd-ae9d-ee5f268a1ab1","keyword":"气动探针","originalKeyword":"气动探针"},{"id":"51739a10-b99c-4432-a385-6d08bab71a03","keyword":"表面压力测量","originalKeyword":"表面压力测量"}],"language":"zh","publisherId":"gcrwlxb2006z1030","title":"大小叶片压气机平面叶栅试验研究","volume":"27","year":"2006"},{"abstractinfo":"本文以UpWind/NREL 5 MW为参考风力机,通过重新集成和改进FAST/Aerodyn气动、结构模块,结合Matlab/Simulink里搭建的PID控制器,自主开发了基于柔性尾襟翼(DTEF)的“智能叶片”整机气动伺服弹性仿真平台.在此基础上,研究了基于DTEF智能叶片系统降低IEC多种湍流风下疲劳载荷的有效性及其疲劳载荷减少情况.结果表明;无论是标准湍流风模型(NTM)还是极限湍流模型(ETM)下,所开发的智能叶片系统都有效地降低了疲劳载荷,其中,叶根挥舞弯矩和叶尖偏移量的波动都得到了有效的减少.","authors":[{"authorName":"余畏","id":"e7345aac-3f7e-4445-8589-dedcdaaa6280","originalAuthorName":"余畏"},{"authorName":"张明明","id":"37736ef3-8116-4e8e-98db-4221b42d63d9","originalAuthorName":"张明明"},{"authorName":"徐建中","id":"191558c5-5bbd-48e6-b214-244a29727de6","originalAuthorName":"徐建中"}],"doi":"","fpage":"1055","id":"663a0046-3724-44ce-96b5-20a0299477d9","issue":"6","journal":{"abbrevTitle":"GCRWLXB","coverImgSrc":"journal/img/cover/GCRWLXB.jpg","id":"32","issnPpub":"0253-231X","publisherId":"GCRWLXB","title":"工程热物理学报 "},"keywords":[{"id":"9c9b7e20-2b37-4f37-adaf-2be8fb638e5b","keyword":"智能叶片","originalKeyword":"智能叶片"},{"id":"0cf40be4-6b7d-47c9-b842-be13aea1d731","keyword":"可变形尾襟翼","originalKeyword":"可变形尾缘襟翼"},{"id":"767f6d83-5bac-4806-aa55-cb5e16d8d9df","keyword":"疲劳载荷","originalKeyword":"疲劳载荷"},{"id":"a93ab50b-0782-4627-8269-b95a5ab965a4","keyword":"PID控制器","originalKeyword":"PID控制器"},{"id":"7d1f32fb-259d-48a0-ba55-9d3d02d41fb3","keyword":"湍流风","originalKeyword":"湍流风"}],"language":"zh","publisherId":"gcrwlxb201306013","title":"基于柔性尾襟翼的风电叶片气动载荷智能控制","volume":"34","year":"2013"}],"totalpage":125,"totalrecord":1242}