陈永坤
,
龙晋明
,
刘方方
,
陈艳容
表面技术
doi:10.3969/j.issn.1001-3660.2006.03.011
锡的氧化物作为锂离子电池负极材料是近来人们研究的热点之一,因为它的理论容量是石墨的2倍以上.然而,较大的首次容量损失是该材料的致命弱点.研究表明,纳米纤维结构的电极材料对解决该问题起到很大的作用.多孔氧化铝膜具有制备简单,控制纳米孔洞尺寸方便等优点,利用多孔氧化铝膜作为载体采用溶胶-凝胶-模板法制备SnO2纳米纤维,对解决锂离子电池首次可逆损失以及今后研究以锡基纳米纤维作为锂离子电池负电池材料的电化学性能有很大的意义.为了找寻在草酸电解液中制备氧化铝模板的最佳工艺,针对各种工艺参数(如电流密度、氧化时间、电解液浓度等)对氧化铝膜形成的影响进行了研究,确定最佳工艺为:电流密度1.25A/dm2,氧化时间1~2h,草酸电解液浓度为0.3~0.5mol/L,并对氧化锡纳米纤维结构进行了表征.
关键词:
SnO2纳米纤维
,
阳极氧化铝
,
模板
,
锡氧化物
,
锂离子电池
段媛媛
,
宋少青
,
程蓓
,
余家国
,
姜传佳
催化学报
doi:10.1016/S1872-2067(16)62551-2
甲醛是主要的室内空气污染物,气相中甲醛去除技术具有重要意义.常用的甲醛去除技术主要包括物理和化学吸附、光催化分解和热催化氧化,其中能在常温下进行的催化氧化最具发展和实用前景.能在室温下高效催化甲醛完全氧化的催化剂一般为负载型贵金属,如铂(Pt)、钯、金、银等.除了选择具有内在高活性的组分,通过提高贵金属分散度,增强贵金属-载体相互作用,增加载体的甲醛亲和性等方法也可提高甲醛催化分解活性.以上方法主要关注催化剂化学性质的改良;另一方面,催化剂的微观几何结构以及传质快慢对表观催化反应速率也有重要影响.近年来研究表明,分等级结构利于反应物在材料孔隙中的扩散输移,可大幅提高催化活性.因此,我们制备了具有分等级结构的花状锡氧化物(SnOx)负载的Pt纳米颗粒,并研究其室温下催化分解甲醛的性能.花状SnOx以氟化亚锡和尿素为原料,通过水热法制备;Pt通过浸渍、硼氢化钠还原法负载,制备Pt/SnOx催化剂.另外,对SnOx进行球磨处理破坏其分等级结构,制备g-SnOx及Pt/g-SnOx作为对照.通过场发射扫描电镜观察,制备的锡氧化物为具有分等级结构的花状微球,直径约1?m,由厚度约20 nm的花瓣状纳米片交错连接而成.X射线衍射(XRD)谱图对应四方相氧化亚锡(SnO,JCPDS 06-0395),但也观察到四方金红石相氧化锡(SnO2,JCPDS 41-1445)的微弱特征峰.高分辨透射电镜(HRTEM)仅观察到四方相SnO的晶格条纹.根据X射线光电子能谱(XPS)结果,在花状锡氧化物的表面,锡元素的氧化态为正四价.综合以上表征结果表明:制备的锡氧化物主体为SnO,由于表面被空气氧化,含有少量SnO2.通过透射电镜观察Pt/SnOx催化剂发现,直径2–3 nm的Pt纳米颗粒高度分散负载于SnOx纳米片表面;XPS结果表明,纳米颗粒中Pt的价态为0价,与HRTEM观测结果一致.甲醛分解测试采用静态测试系统,在体积为6 L的测试箱中加入一定浓度甲醛后开始反应,监测甲醛、二氧化碳(CO2)和一氧化碳(CO)浓度随时间的变化.结果表明,花状SnOx在室温下不具有催化甲醛氧化活性,仅能通过吸附作用去除少量甲醛;而负载0价金属态Pt纳米颗粒后,甲醛快速分解为CO2和水,且无CO生成.在初始浓度170 ppm条件下,反应1 h后,甲醛去除率达到87%.Pt/SnOx催化剂的高活性表明,金属态Pt是催化甲醛氧化的活性组分.经球磨处理后制备的Pt/g-SnOx,其催化活性远低于具有分等级结构的Pt/SnOx;后者的二级反应速率常数为前者的5.6倍,证明分等级结构能有效加速甲醛催化氧化分解.本研究结果对于高效分解室内甲醛材料的设计、制备提供了一种指导性的新思路.
关键词:
催化甲醛氧化
,
室温
,
锡氧化物
,
铂
,
分等级结构
,
花状