陈清江
,
魏冰蔗
,
柴昱洲
,
张彦博
液晶与显示
doi:10.3788/YJYXS20163108.0784
提出了一种非抽样双树复小波变换(UDT-CWT)与基于块主元旋转的非负矩阵分解(BPP-NMF)相结合的多聚焦图像融合算法。利用 UDT-CWT 具有完美的平移不变性及良好的方向选择性,首先对图像进行多尺度、多方向分解并得到低频子带和高频子带系数;然后对低频子带系数采用块主元旋转的非负矩阵分解的融合策略,高频系数则选用高斯加权区域能量与区域标准差一致性选择的融合准则。最后对融合后的系数进行 UDT-CWT 逆变换得到重构图像。选用多组多聚焦图像进行融合并对融合结果进行主观视觉、客观方面的评价。试验结果表明,该融合算法不仅具有良好的视觉效果,同时在客观评价指标也优于一般的融合策略,验证了该算法的有效性。
关键词:
非抽样双树复小波变换
,
非负矩阵分解
,
块主元旋转法
,
加权区域能量
,
图像融合
郑明秋
,
杨帆
液晶与显示
doi:10.3788/YJYXS20173203.0213
为了提高人脸识别正确率,提出基于改进非负矩阵分解的神经网络人脸识别算法.首先利用改进的非负矩阵分解对人脸图像进行特征提取,提高非负矩阵分解速度.接着将提取出的特征信息作为神经网络学习入口进行特征训练,由于神经网络在学习过程中,容易出现局部最小值且收敛速度慢等问题,为此采用改进的遗传算法对神经网络进行优化处理,获得最终的人脸识别结果.实验结果表明:利用改进的非负矩阵分解方法能够降低神经网络的分类训练负荷量和运算量,提高人脸识别识别率.通过和各种方法比较可知,本方法的人脸识别率都较高.本方法人脸特征分解速度快,提高了神经网络训练前期精度和收敛速度,使得人脸识别正确率高.当特征向量个数达到40以上时,人脸识别正确率保持95%以上.
关键词:
机器视觉
,
人脸识别
,
非负矩阵分解
,
遗传算法
,
神经网络