任彦军
,
,王家伟,张晓兵,赵浩文
钢铁
通过研究高炉-转炉界面铁水运输过程温度的主要影响因素,确定了影响高炉-转炉界面铁水运输过程温度的参数,建立了基于Levenberg-Marquardt(LM)算法BP神经网络的高炉-转炉界面铁水温度及铁水过程温降的预报模型。用沙钢100包铁水数据进行模型训练,50包铁水数据进行现场预报,结果表明:在高炉-转炉界面“一包到底”模式下,当绝对误差│X│≤20℃时,铁水温度命中率为94%,铁水温降命中率为78%;当绝对误差│X│≤40℃时,铁水温度命中率为100%,铁水温降命中率为92%,该预报模型能够满足现场实际生产需求,对炼钢生产有很好的指导意义。
关键词:
温度
,
BP neural network
,
LM algorithm
,
predictive model