欢迎登录材料期刊网

材料期刊网

高级检索

  • 论文(2)
  • 图书()
  • 专利()
  • 新闻()

Effect of Cooling Method on Microstructure and Mechanical Properties of Hot-Rolled C-Si-Mn TRIP Steel

LIU Ji-yuan , ZHANG Zi-cheng , ZHU Fu-xian , LI Yan-mei , Manabe Ken-ichi

钢铁研究学报(英文版)

The controlled cooling technology following hot rolling process is a vital factor that affects the final microstructure and mechanical properties of the hot-rolled transformation induced plasticity (TRIP) steels. In the present study, low alloy C-Si-Mn TRIP steel was successfully fabricated by hot rolling process with a 450 hot rolling mill. To maximize the volume fraction and stability of retained austenite of the steel, two different cooling methods (air-cooling and ultra-fast cooling “AC-UFC” and ultra-fast cooling, air-cooling and ultra-fast cooling “UFC-AC-UFC”) were conducted. The effects of the cooling method on the microstructure of hot-rolled TRIP steel were investigated via optical microscope, transmission electron microscope and conversion electron Mssbauer spectroscope. The mechanical properties of the steel were also evaluated by conventional tensile test. The results indicated that ferrite and bainite in the microstructure were refined with the cooling method of UFC-AC-UFC. The morphology of retained austenite was also changed from small islands distributing in bainite district (obtained with AC-UFC) to granular shape locating at the triple junction of the ferrite grain boundaries (obtained with UFC-AC-UFC). As a result, the TRIP steel with a content of retained austenite of 1152%, total elongation of 32% and product of tensile strength and total elongation of 27552 MPa·% was obtained.

关键词: hot-rolled TRIP steel , retained austenite , TRIP effect , Mssbauer spectra , mechanical property

Effects of Warm Deformation on Mechanical Properties of TRIP Aided Fe-C-Mn-Si Multiphase Steel

TIAN Yong , LI Zhuang

钢铁研究学报(英文版)

Warm deformation tests were performed using a kind of tubby heater. The microstructures and mechanical properties of an Fe-C-Mn-Si multiphase steel resulting from different warm deformation temperatures were investigated by using LOM (light optical microscopy), SEM and XRD. The results indicated that the microstructure containing polygonal ferrite, granular bainite and a significant amount of the stable retained austenite can be obtained through hot deformation and subsequent austempering. Warm deformation temperature affects the mechanical properties of the hot rolled TRIP steels. Ultimate tensile strength balance reached maximum (881 MPa) when the specimen was deformed at 250 ℃, and the total elongation and strength-ductility reached maximum (38% and 28614 MPa·%, respectively) at deforming temperature of 100 ℃. Martensite could nucleate when austenite was deformed above Ms, because mechanical driving force compensates the decrease of chemical driving force. The TRIP effect occurs in the Fe-C-Mn-Si multiphase steel at deforming temperature ranging from 15 to 350 ℃. The results of the effects of warm deformation on the mechanical properties of the Fe-C-Mn-Si multiphase steel can provide theoretical basis for the applications and the warm working of the hot rolled TRIP sheet steels in industrial manufacturing.

关键词: warm deformation , Fe-C-Mn-Si multiphase steel , TRIP effect , mechanical property

出版年份

刊物分类

相关作者

相关热词