欢迎登录材料期刊网

材料期刊网

高级检索

  • 论文(2)
  • 图书()
  • 专利()
  • 新闻()

Relationship Among Microstructure and Properties and Heat Treatment Process of Ultra-High Strength X120 Pipeline Steel

ZHOU Min , DU Lin-xiu , LIU Xiang-hua

钢铁研究学报(英文版)

The variation of heat treatments including directed quenching and tempering off-line after controlled rolling (DQT) and quenching off-line and tempering off-line after controlled rolling (RQT) with microstructure and mechanical properties of a low-carbon microalloyed steel was compared and analyzed. For DQT, the quenched steel was obviously banded microstructure, with increasing tempering temperature, lath martensite coarsened, the cusp carbide precipitated at grain boundaries, the yield strength fluctuated slightly, and the fracture-separation was obvious. The impact toughness was better in the steel tempered at 500 ℃ for 1 h. In RQT, with increasing tempering temperature, lath martensite degenerated, intragranular and intergranular finer precipitations with smaller than 30 nm precipitated and grew up and were distributed dispersedly, the stripe-like carbides were distributed at grain boundaries, and the yield strength and tensile strengthen decreased obviously. The impact toughness of RQT process was much better than that of DQT process, and the comprehensive mechanical properties were better for the steel tempered at 500 ℃ for 1 h of RQT process.

关键词: X120 pipeline steel , heat treatment , microstructure , mechanical property , fracture-separation

Effect of Microstructures on Elevated-Temperature Wear Resistance of a Hot Working Die Steel

WEI Min-xian , WANG Shu-qi , WANG Lan , CHEN Kang-min

钢铁研究学报(英文版)

Elevated-temperature wear tests under atmospheric conditions at 400 ℃ were performed for a hot working die steel H21 on a pin-on-disk wear tester. The phase and morphology of worn surfaces were examined using XRD and SEM, and the relation of wear resistance to tempered microstructures was studied for H21 steel. XRD patterns exhibit that oxidative wear is a predominated wear mechanism with Fe3O4 and Fe2O3 on worn surfaces. It is found that with increasing normal load, obvious plastic deformation of substrate appears on worn surfaces. Microstructures start to affect apparently wear resistance of the steel with an increase of load. Under loads of 50-100 N, wear losses of steel retain low values and relatively approach for steels with various microstructures. As loads are increased to 150-200 N, wear losses of steel start to increase obviously and present apparent difference for steel with various microstructures. Wear resistance is found to increase in the sequence as follows: tempered sorbite, tempered martensite, tempered troostite without secondary hardening and tempered troostite with secondary hardening or upcoming one. Higher strength and microstructural stability are required for steels with excellent wear resistance.

关键词: steel , heat treatment , microstructure , wear , wear resistance

出版年份

刊物分类

相关作者

相关热词