G Subhash Chander
,
G Madhusudhan Reddy
,
A Venugopal Rao
钢铁研究学报(英文版)
Fundamental investigation of continuous drive friction welding of austenitic stainless steel (AISI 304) and low alloy steel (AISI 4140) is described. The emphasis is made on the influence of rotational speed on the microstructure and mechanical properties such as hardness, tensile strength, notch tensile strength and impact toughness of the dissimilar joints. Hardness profiles across the weld show the interface is harder than the respective parent metals. In general, maximum peak hardness is observed on the stainless steel side, while other peak hardness is on the low alloy steel side. A trough in hardness distribution in between the peaks is located on the low alloy steel side. Peak hardness on the stainless steel and low alloy steel side close to the interface increases with a decrease in rotational speed. All transverse tensile joints fractured on stainless steel side near the interface. Notch tensile strength and impact toughness increase with increase in rotational speed up to 1500 r/min and decrease thereafter. The mechanism of influence of rotational speed for the observed trends is discussed in the torque, displacement characteristics, heat generation, microstructure, fractography and mechanical properties.
关键词:
friction welding
,
dissimilar metal joint
,
austenitic stainless steel
,
low alloy steel
,
microstructure
,
impact toughness
,
tensile strength
LIU Cheng-jun
,
HUANG Ya-he
,
JIANG Mao-fa
钢铁研究学报(英文版)
Clean high carbon heavy rail steel was prepared by the process of vacuum induction furnace smelting, forging and rolling. Mechanisms of RE on the impact toughness and fracture toughness for clean high carbon steel were investigated. In addition, the appropriate range of RE content for clean high carbon steel was determined. Both the austenite grain size and pearlite lamellar spacing decreased due to small amount of RE, consequently the impact toughness and fracture toughness were improved evidently. When the RE content exceeded a critical value, the pearlite lamellar spacing was increased, because RE was segregated on the austenite grain boundaries, damaged the orientation relationship of pearlite transformation, caused the disorder growth and morphology degenerating of pearlite. With the increasing of RE content, both the impact toughness and fracture toughness of clean high carbon steel were gradually increased at first and then decreased. It was found that when the RE content was between 00081% and 00088%, both the impact toughness and fracture toughness of clean high carbon heavy rail steel were the best. The maximum ballistic work was 212 J (20 ℃) and 122 J (-20 ℃), respectively. The maximum plane-strain fracture toughness was 4567 MPa·m1/2 (20 ℃) and 3704 MPa·m1/2 (-20 ℃), respectively.
关键词:
rare earth
,
high carbon steel
,
heavy rail steel
,
clean steel
,
impact toughness
,
fracture toughness
杨景红
,
王小燕
,
刘刚
钢铁
通过力学性能测试及微观组织分析研究了传统中板及低碳,Nb-Ti微合金化Q345R热连轧压力容器板在手工焊、气保焊及埋弧焊3种焊接工艺下的接头性能,测定了不同焊接工艺下接头各区域的硬度分布,评价了Q345R接头力学性能。试验结果表明,连轧Q345R板焊接接头具有更好的综合性能,其接头冲击韧性明显好于传统中板,粗晶区淬硬程度低。连轧板良好的性能来源于TMCP工艺下碳当量降低及Nb-Ti微合金化处理改善了基体及接头的微观组织。
关键词:
Q345R
,
pressure vessel
,
impact toughness
,
microalloy