ZHANG Yan
,
SUN Yu-fu
,
ZHAO Jing-yu
,
GUAN Shao-kang
钢铁研究学报(英文版)
Microstructure and high-temperature dry sliding wear at 600 ℃ in ambient air of austenitic heat-resistant steel ZG40Cr25Ni20 with different contents (mass percent) of Al (0 to 710%) have been investigated. The results show that microstructures of 468% and 710% Al addition content consist of the matrix and reinforcement of intermetallic compound γ′ and carbide, while microstructures of ZG40Cr25Ni20 without Al and with Al of 168% are absent of γ′. Higher wear resistance than the original ZG40Cr25Ni20 alloy is achieved in alloys with higher content of Al under the same high-temperature wear test condition. The wear rates of Fe-25Cr-20Ni-710Al and Fe-25Cr-20Ni-468Al are only 2083% and 4583% of that of Fe-25Cr-20Ni, respectively. Heat-resistant steels with higher contents of Al (472% and 710%) have higher hardness than those with lower contents of Al (168% and 0). Wear mechanisms of ZG40Cr25Ni20 are considered as severe plough plastic deformation and slight adhesive. However, wear mechanisms of Fe-25Cr-20Ni-468Al are light micro-cutting and oxidation-wear, while that of Fe-25Cr-20Ni-710Al are severe adhesive transfer and oxidation-wear.
关键词:
austenitic heat-resistant steel
,
Al
,
microstructure
,
high-temperature sliding wear
,
mechanism