{"currentpage":1,"firstResult":0,"maxresult":10,"pagecode":5,"pageindex":{"endPagecode":5,"startPagecode":1},"records":[{"abstractinfo":"用氨化树脂进行湿法纺丝,采用接触角测量仪研究了通氨量对树脂亲水性的影响,借助光学显微镜、扫描电镜和压汞仪阐明了凝固浴温度、凝固浴中二甲亚砜的浓度和通氨量对初生丝条截面形貌和孔结构的影响.结果表明:随着树脂亲水性的增强和温度的升高,初生丝条的截面形貌趋向于圆形;树脂氨化后在湿纺初生丝条中生成的孔的总体积明显降低,且随着通氨量的增大在初生丝条中有一部分微米级大孔(6 μm~100 μm)转变为纳米级小孔(孔径<140 nm),并且随着凝固浴温度和二甲亚砜浓度的升高初生丝条中大孔所占的体积百分数明显降低.","authors":[{"authorName":"任富忠","id":"4047896f-c2c4-4565-9a2e-e67a73b25641","originalAuthorName":"任富忠"},{"authorName":"吕春祥","id":"c9ed4124-f8dd-4a90-bcdb-558362a7062f","originalAuthorName":"吕春祥"},{"authorName":"梁晓怿","id":"8cf7e859-e8dc-4a1a-9be8-a6ffddb18693","originalAuthorName":"梁晓怿"},{"authorName":"吴刚平","id":"4c2c62e2-0ec7-4a41-8672-56cf831419b5","originalAuthorName":"吴刚平"},{"authorName":"贺福","id":"b5911f59-fd41-4f2c-b9ae-e355cfcfe87d","originalAuthorName":"贺福"},{"authorName":"凌立成","id":"b994e996-70ae-4bf0-a764-41eb277db382","originalAuthorName":"凌立成"}],"doi":"10.3969/j.issn.1007-8827.2004.04.005","fpage":"268","id":"18ab335c-6074-4251-a12d-22d8fc1aa066","issue":"4","journal":{"abbrevTitle":"XXTCL","coverImgSrc":"journal/img/cover/XXTCL.jpg","id":"70","issnPpub":"1007-8827","publisherId":"XXTCL","title":"新型炭材料"},"keywords":[{"id":"329c603f-79d9-4312-9ce0-749295c73e50","keyword":"PAN树脂","originalKeyword":"PAN树脂"},{"id":"11d4a714-b424-483b-ad91-338e83e800ad","keyword":"氨化","originalKeyword":"氨化"},{"id":"357942d4-8470-4320-9ea0-00cc24ce3fc0","keyword":"湿纺","originalKeyword":"湿纺"},{"id":"1dae1d0d-cdd6-434b-bfbe-1e91083e2d76","keyword":"炭纤维","originalKeyword":"炭纤维"}],"language":"zh","publisherId":"xxtcl200404005","title":"氨化对湿纺PAN初生丝条结构的影响","volume":"19","year":"2004"},{"abstractinfo":"以预氧化纤维不织布经不同热处理后,采用液态含浸法浸酚醛树脂后经热压成型,制成炭/炭复合材料前驱体,随之将这些前驱体经230 ℃稳定化,600 ℃及1 000 ℃炭化处理.讨论了不同纤维不织布的结构变异,以及各种炭/炭复合材料其微细结构及物性之变化.在物性分析方面,主要是以挠曲强度的测试为骨架,并以扫瞄式电子显微镜(SEM)观察破断表面,探讨各种复合材料经不同温度处理后之破坏行为,研究结果显示,以预氧化纤维及经600 ℃处理后之纤维所制复合材料经三个不同温度(230 ℃,600 ℃,1 000 ℃)处理后,其破坏行为均呈现剧烈的脆性破坏,且具有平滑之破断表面;而以经1 000 ℃处理后之纤维所制复合材料经600 ℃及1 000 ℃炭化后则呈现拟塑性破坏模式,并伴随显著的纤维拖出现象.","authors":[{"authorName":"柯泽豪","id":"76b65fdb-152e-424d-8bb2-547cb013cb2b","originalAuthorName":"柯泽豪"},{"authorName":"卢盈壬","id":"0800679d-b8c4-4b0e-8d8c-f5266e0822a1","originalAuthorName":"卢盈壬"}],"doi":"10.3969/j.issn.1007-8827.2000.04.001","fpage":"1","id":"35d91fe0-7130-4a63-b492-7a6506029501","issue":"4","journal":{"abbrevTitle":"XXTCL","coverImgSrc":"journal/img/cover/XXTCL.jpg","id":"70","issnPpub":"1007-8827","publisherId":"XXTCL","title":"新型炭材料"},"keywords":[{"id":"5d45eb57-7582-446c-b9fe-7cb970d50a19","keyword":"炭/炭复合材料","originalKeyword":"炭/炭复合材料"},{"id":"1480c5dd-c43e-4a54-ad86-6c382af307ff","keyword":"预氧化纤维不织布","originalKeyword":"预氧化纤维不织布"}],"language":"zh","publisherId":"xxtcl200004001","title":"PAN基预氧化纤维不织布增强酚醛树脂制作炭/炭复合材料","volume":"15","year":"2000"},{"abstractinfo":"随着科技发展,我国碳纤维用品消费量位居首位,约占总消费量的80% ~ 90%.国外碳纤维主要开发超高强度、超高模量的碳纤维.本文介绍了碳纤维复合材料在文体休闲领域的应用,PAN基碳纤维技术开发新方向包括:碳纤维性能的提高;基体树脂技术;成型技术三个方面.","authors":[{"authorName":"李扬","id":"6170cc14-b742-419d-a55b-3784bd8e8f01","originalAuthorName":"李扬"}],"doi":"","fpage":"129","id":"bc14778f-decb-4186-8e22-9087131b519a","issue":"1","journal":{"abbrevTitle":"HCCLLHYYY","coverImgSrc":"journal/img/cover/HCCLLHYYY.jpg","id":"42","issnPpub":"1671-5381","publisherId":"HCCLLHYYY","title":"合成材料老化与应用"},"keywords":[{"id":"a2d010ec-d9c5-4955-a7ce-5afcaa81127d","keyword":"碳纤维","originalKeyword":"碳纤维"},{"id":"e0d4e6fa-b37e-461e-b52b-852f9cb7db05","keyword":"技术动向","originalKeyword":"技术动向"},{"id":"ce3a96a7-15f3-4878-acbe-180474427306","keyword":"发展趋势","originalKeyword":"发展趋势"}],"language":"zh","publisherId":"hccllhyyy201601027","title":"PAN基碳纤维技术动向及发展趋势","volume":"45","year":"2016"},{"abstractinfo":"聚丙烯腈(Polyacrylonitrile缩写为PAN)基炭纤维市场需求旺盛,但由于我国PAN基炭纤维生产企业规模小、产品性能低,产品占领不了市场,企业效益欠佳.通过经济规模方法的分析,就国内现有技术状况和两个样本生产线,用工程技术法对PAN基炭纤维的经济规模进行分析,为我国炭纤维产业化发展提供参考.分析表明,国内PAN基炭纤维经济规模的起点为200t/a~275t/a.","authors":[{"authorName":"夏春霞","id":"a232b6ea-c66d-49f5-9645-3ad2a16e4a37","originalAuthorName":"夏春霞"},{"authorName":"闫亚明","id":"43456a1f-d88c-46e1-aabf-8f95accfd478","originalAuthorName":"闫亚明"},{"authorName":"邓蜀平","id":"63722eab-e20e-4958-b5b4-7aafa1ced514","originalAuthorName":"邓蜀平"},{"authorName":"白光君","id":"90971c3b-d8ef-46c9-82c2-58ca1fc2aa15","originalAuthorName":"白光君"},{"authorName":"蒋云峰","id":"e9a6da7c-d9b4-4d1b-af05-1643b69f9804","originalAuthorName":"蒋云峰"},{"authorName":"宋惠森","id":"ee7945bd-6d7c-4da3-b272-5db5217cd6d3","originalAuthorName":"宋惠森"},{"authorName":"王钰","id":"70543256-5279-4bee-8af3-af943bedf679","originalAuthorName":"王钰"}],"doi":"10.3969/j.issn.1007-8827.2001.04.013","fpage":"58","id":"56a8fcdf-a224-4a2e-be53-dc4bafb7c5cb","issue":"4","journal":{"abbrevTitle":"XXTCL","coverImgSrc":"journal/img/cover/XXTCL.jpg","id":"70","issnPpub":"1007-8827","publisherId":"XXTCL","title":"新型炭材料"},"keywords":[{"id":"245c9da5-7027-433b-9d40-359265aeded9","keyword":"PAN基炭纤维","originalKeyword":"PAN基炭纤维"},{"id":"9d1cef40-24c8-434f-92da-f47aa6ca1b5c","keyword":"经济规模","originalKeyword":"经济规模"},{"id":"b10503a1-4019-4ef7-bcee-6c41e6829098","keyword":"工程技术法","originalKeyword":"工程技术法"}],"language":"zh","publisherId":"xxtcl200104013","title":"PAN基炭纤维经济规模分析","volume":"16","year":"2001"},{"abstractinfo":"将聚酰亚胺(PI)加入丙烯腈-衣康酸-二甲基亚砜体系进行聚丙烯腈(PAN)溶液聚合,湿法纺丝制备了PAN/PI复合纤维.利用流变仪、红外光谱、X射线衍射仪、扫描电镜、差示扫描量热仪等研究了PAN/PI溶液的性质和复合纤维的结构特点.研究发现,加入PI后,聚合物溶液的稳态黏度降低,弹性和粘性模量在低剪切速率区降低;PI作为成核剂,引起初生纤维结晶度增大、晶粒尺寸减小;PI与PAN的溶解性差异导致凝固加快,初生纤维形成皮芯结构;引起原丝体密度减小.PAN/PI纤维在N2下放热量较少,在空气中由于结构疏松放热量较大.","authors":[{"authorName":"李常清","id":"8d97ac9b-692f-4a3e-80d5-a01d119c7dbf","originalAuthorName":"李常清"},{"authorName":"袁姗","id":"8e510fab-e92d-4cab-8c5b-06242971b1ec","originalAuthorName":"袁姗"},{"authorName":"罗荣","id":"3eb8825f-eb45-4ab1-84e5-8dbfa76e45f8","originalAuthorName":"罗荣"},{"authorName":"郭雅明","id":"1c6d9c70-7c05-4eec-abf5-fd547d918b11","originalAuthorName":"郭雅明"},{"authorName":"徐樑华","id":"886da705-afb5-45ab-a52f-d0edf4909988","originalAuthorName":"徐樑华"}],"doi":"","fpage":"93","id":"3b1de167-07e5-4463-95a0-9a1b96cf5b3f","issue":"11","journal":{"abbrevTitle":"GFZCLKXYGC","coverImgSrc":"journal/img/cover/GFZCLKXYGC.jpg","id":"31","issnPpub":"1000-7555","publisherId":"GFZCLKXYGC","title":"高分子材料科学与工程"},"keywords":[{"id":"35fdc938-0d27-4b61-b36c-1e6ff4491bfe","keyword":"聚丙烯腈纤维","originalKeyword":"聚丙烯腈纤维"},{"id":"8ae1cfbf-2c6e-418d-8857-b2311067d13d","keyword":"聚酰亚胺","originalKeyword":"聚酰亚胺"},{"id":"8e5f8483-d933-42c1-94f5-0bae43a27b6f","keyword":"原液改性","originalKeyword":"原液改性"},{"id":"cb553e99-4637-452a-97b5-aefd8b68e87d","keyword":"晶态结构","originalKeyword":"晶态结构"}],"language":"zh","publisherId":"gfzclkxygc201011025","title":"PAN/PI复合纤维的结构","volume":"26","year":"2010"},{"abstractinfo":"为了提高聚丙烯腈(PAN)初生纤维的可拉伸性能,将溶液纺丝得到的初生纤维进行不同时间的恒温干燥处理,研究其拉伸性能随干燥时间的变化规律。结果表明,干燥处理可以大幅度提升PAN初生纤维的力学性能,其拉伸强力可达10.3cN,断裂伸长可达263.5%;随着干燥时间的延长,纤维的可拉伸性能增强,经过10h干燥后的初生纤维具有最佳可牵伸性能;而拉伸速率的提高可以有效促进未干燥初生纤维的拉伸变形,而对干燥处理后纤维的拉伸性能的影响不大。用SEM观察纤维断裂形貌发现,PAN纤维的致密性随牵伸比的增加而提高。","authors":[{"authorName":"谢奔","id":"f3723dbf-39fb-4386-968b-efc7fd031f65","originalAuthorName":"谢奔"},{"authorName":"朱波","id":"65313752-4131-4d7f-b24a-eb66a9dbadc6","originalAuthorName":"朱波"},{"authorName":"王政","id":"8b9ffad2-f12c-4a0f-b93d-8b4075a7ccb2","originalAuthorName":"王政"},{"authorName":"井敏","id":"5a8a8d21-c78b-454a-93cd-3afdab7b07a8","originalAuthorName":"井敏"},{"authorName":"王进军","id":"ed714a8e-fffc-41e4-b39f-12d3bea74330","originalAuthorName":"王进军"},{"authorName":"张春雷","id":"642056f4-b1c6-49e4-9650-f769ff71b006","originalAuthorName":"张春雷"},{"authorName":"吴益民","id":"0d296bb2-3fd0-4dea-8d76-1072fb51422f","originalAuthorName":"吴益民"}],"doi":"","fpage":"2018","id":"3d07fd66-b890-48fd-bc70-d63ef7d76941","issue":"15","journal":{"abbrevTitle":"GNCL","coverImgSrc":"journal/img/cover/GNCL.jpg","id":"33","issnPpub":"1001-9731","publisherId":"GNCL","title":"功能材料"},"keywords":[{"id":"e2f9d708-f4ec-4994-a754-82ad0f8a453c","keyword":"聚丙烯腈","originalKeyword":"聚丙烯腈"},{"id":"d28bdf0e-fb4b-44c4-86e0-cca0f6448ad0","keyword":"初生纤维","originalKeyword":"初生纤维"},{"id":"19621f06-3fdd-46e4-b7ea-6ca13999bacf","keyword":"干燥","originalKeyword":"干燥"},{"id":"9fee61b6-bfd4-4073-a333-8611655e2658","keyword":"拉伸性能","originalKeyword":"拉伸性能"},{"id":"ef50ae9c-8a00-4bc9-b4da-3c1b2710b4f5","keyword":"断裂形貌","originalKeyword":"断裂形貌"}],"language":"zh","publisherId":"gncl201215012","title":"PAN初生纤维拉伸性能试验研究","volume":"43","year":"2012"},{"abstractinfo":"采用连续预氧化碳化法,在700~1300℃制备了聚丙烯腈(PAN)基碳化纤维.使用元素分析仪、X射线衍射仪和高精度电阻仪检测了碳化纤维的化学成分、物相结构和体电阻率;使用绝缘电阻仪测试了碳化纤维/树脂复合涂层的表面电阻率.研究结果表明,随着碳化温度的升高,纤维的碳元素含量增大,同时纤维中形成大量类石墨结构,增强了纤维的导电性,碳化纤维的电阻率由1.12Ω·cm急剧下降至1.95×10~(-3)Ω·cm;在树脂中添加短切碳化纤维制备的防静电复合涂层的表面电阻率可在10~4~10~7Ω之间调整.","authors":[{"authorName":"马婕","id":"d5304774-7582-483e-b007-9118f4887cf1","originalAuthorName":"马婕"},{"authorName":"王成国","id":"85696006-b09a-46c4-9a63-f201c6c60f49","originalAuthorName":"王成国"},{"authorName":"于美杰","id":"14a34ab9-902b-40f6-95b4-c30c5691e0eb","originalAuthorName":"于美杰"},{"authorName":"王启芬","id":"938f957c-0b85-426c-8b8b-a2b85e28b623","originalAuthorName":"王启芬"},{"authorName":"张敏","id":"45d0a4c1-cf92-485a-bb91-0925406ad46e","originalAuthorName":"张敏"}],"doi":"","fpage":"549","id":"1da8a294-b96b-4ce5-a1f4-9e3f05488643","issue":"3","journal":{"abbrevTitle":"GNCL","coverImgSrc":"journal/img/cover/GNCL.jpg","id":"33","issnPpub":"1001-9731","publisherId":"GNCL","title":"功能材料"},"keywords":[{"id":"5d5168f0-a73a-472c-8b2b-2a0b46f390ec","keyword":"碳化纤维","originalKeyword":"碳化纤维"},{"id":"59264e6c-f214-4997-8ea0-c67934682627","keyword":"化学成分","originalKeyword":"化学成分"},{"id":"97c81ada-2598-417a-bdbd-738f1af2f24d","keyword":"表观结晶度","originalKeyword":"表观结晶度"},{"id":"444b84d7-ab35-4328-96c3-8d76165f00e8","keyword":"体电阻率","originalKeyword":"体电阻率"},{"id":"4fc036c9-3b6d-458a-bea6-6187455d65ea","keyword":"表面电阻率","originalKeyword":"表面电阻率"}],"language":"zh","publisherId":"gncl201003051","title":"PAN基碳化纤维的电性能及应用","volume":"41","year":"2010"},{"abstractinfo":"PAN carbon membranes were prepared by carbonizing the initial PAN membranes in vacuum and Ar at different temperatures. FTIR, Raman and XRD were applied to study the influence of carbonization atmosphere on the structure changes of PAN carbon membranes. The variations in adsorption peaks of FTIR, the intensity, position and FWHM of the Raman peaks, and microcrystallite parameters from XRD (e.g., d(002), Lc and La) are correlated with the structure change of PAN carbon membranes. Analyses results reveal that vacuum atmosphere can produce PAN carbon membranes with higher order degree than those in Ar atmosphere, although the structures of PAN carbon membranes prepared in the two atmospheres are both amorphous. In addition, vacuum atmosphere can significantly accelerate the degradation reaction of PAN membranes and favors the preparation of carbon membranes with smaller pore size.","authors":[],"categoryName":"|","doi":"","fpage":"197","id":"b4173b79-852b-4be8-8c28-84ec7ee4f17c","issue":"2","journal":{"abbrevTitle":"JOPM","id":"ef56b7c9-aa47-49c9-969b-242976b2618e","issnPpub":"1380-2224","publisherId":"JOPM","title":"Journal of Porous Materials"},"keywords":[{"id":"cf2532b6-f5a8-4b2e-bfab-2b6537563182","keyword":"Carbonization;Atmosphere;Carbon membranes;PAN;Structure;molecular-sieve membranes;gas separation membranes;phenolic resin;pyrolysis conditions;thermal-degradation;polyimide;polyacrylonitrile;deposition;graphite;kapton","originalKeyword":"Carbonization;Atmosphere;Carbon membranes;PAN;Structure;molecular-sieve membranes;gas separation membranes;phenolic resin;pyrolysis conditions;thermal-degradation;polyimide;polyacrylonitrile;deposition;graphite;kapton"}],"language":"en","publisherId":"1380-2224_2009_2_1","title":"Effect of carbonization atmosphere on the structure changes of PAN carbon membranes","volume":"16","year":"2009"},{"abstractinfo":"Structural changes in carbon fibers at each stage of, especially, preoxidation process are well known to play a great role in achieving the ultimate product quality. Differential scanning calorimetry (DSC), scanning electron microscope (SEM), density method and optical microscope were used to characterize the preoxidation extent. A conventional approach, e:g., density aim, to evaluate the extent of preoxidation is not very exact. A DSC curve of a PAN precursor only can provide general information, major in the temperature regime of preoxidation reaction. However, the evaluation of a preoxidation extent, especially from conventional preoxidation temperature with a great span regime of 200~400℃, is put forward in this paper, in which the evolution of core/shell morphological structure is a kind of straightforward evidence.","authors":[{"authorName":"Wangxi ZHANG","id":"cb356f01-b250-470f-a84c-d4ab681d99cd","originalAuthorName":"Wangxi ZHANG"},{"authorName":" Jie LIU","id":"ff67343d-b2a3-45ee-949a-58f4175a0138","originalAuthorName":" Jie LIU"},{"authorName":" Jieying LIANG","id":"cb3e2ecd-4312-4e07-891c-728edb78b37c","originalAuthorName":" Jieying LIANG"},{"authorName":"null","id":"b2e52dc9-60bc-4072-af87-7f9f322deded","originalAuthorName":"null"},{"authorName":"null","id":"7f65662a-d47e-4406-bd44-9c2e289893af","originalAuthorName":"null"},{"authorName":"null","id":"b6abea60-e2bc-48a6-9bf7-645627f54969","originalAuthorName":"null"}],"categoryName":"|","doi":"","fpage":"369","id":"dd954213-ccb8-4d42-8dbe-a664202ec906","issue":"4","journal":{"abbrevTitle":"CLKXJSY","coverImgSrc":"journal/img/cover/JMST.jpg","id":"11","issnPpub":"1005-0302 ","publisherId":"CLKXJSY","title":"材料科学技术(英文)"},"keywords":[{"id":"e993a3c7-c3db-4a9c-8792-2717e7cb5e58","keyword":"Preoxidation","originalKeyword":"Preoxidation"},{"id":"35fb7495-93d2-405d-8407-8a654ab30b76","keyword":"null","originalKeyword":"null"},{"id":"a6c73e1c-8eac-417a-a567-b21f32a2ae1c","keyword":"null","originalKeyword":"null"}],"language":"en","publisherId":"1005-0302_2004_4_20","title":"New Evaluation on the Preoxidation Extent of Different PAN Precursors","volume":"20","year":"2004"},{"abstractinfo":"为制备强度较高、适合反冲洗的中空纤维膜,以水相悬浮聚合法制备得到UHMWPAN,研究了引发剂用量、单体浓度、聚合温度、聚合时间、搅拌速度和聚合釜大小对聚合物分子量的影响,在此基础上确定了制备所需UHMW-PAN的合适工艺条件.","authors":[{"authorName":"沈新元","id":"5061ada2-cd54-4e11-bcaa-4a47201195c0","originalAuthorName":"沈新元"},{"authorName":"朱新远","id":"4a267477-0ed9-41a5-a29a-e0a5ef0a5fb9","originalAuthorName":"朱新远"},{"authorName":"郝建斌","id":"4748197e-2200-4007-a9a1-ab31e52f86c8","originalAuthorName":"郝建斌"},{"authorName":"王庆瑞","id":"a2869e08-5935-49b6-a9cb-3f3fe6c92a3f","originalAuthorName":"王庆瑞"}],"doi":"10.3969/j.issn.1007-8924.1998.03.007","fpage":"32","id":"8bc7f9df-8d77-46b2-8d25-6621ea79ebdb","issue":"3","journal":{"abbrevTitle":"MKXYJS","coverImgSrc":"journal/img/cover/MKXYJS.jpg","id":"54","issnPpub":"1007-8924","publisherId":"MKXYJS","title":"膜科学与技术 "},"keywords":[{"id":"a5e55421-3386-4b7e-b348-4a4a7a55c488","keyword":"中空纤维膜","originalKeyword":"中空纤维膜"},{"id":"13d046c6-254e-4392-8cf8-bc43f796cb8a","keyword":"超高分子量","originalKeyword":"超高分子量"},{"id":"127ef67f-7dbc-4093-899a-9a5a4d550e72","keyword":"聚丙烯腈","originalKeyword":"聚丙烯腈"},{"id":"b0292b50-db05-4052-832a-9cfe5cc76116","keyword":"水相悬浮聚合","originalKeyword":"水相悬浮聚合"}],"language":"zh","publisherId":"mkxyjs199803007","title":"UHMW-PAN中空纤维膜的研制及应用(Ⅰ)--UHMW-PAN的合成","volume":"18","year":"1998"}],"totalpage":890,"totalrecord":8893}