{"currentpage":1,"firstResult":0,"maxresult":10,"pagecode":5,"pageindex":{"endPagecode":5,"startPagecode":1},"records":[{"abstractinfo":"本文针对30 m2槽式太阳能集热试验装置,对太阳能集热器的性能进行了模拟.分析了太阳能集热器光热转化过程,建立了太阳能能量转换与传递模型,并开发了模拟计算程序,研究了集热器关键结构参数和运行参数对集热性能的影响规律.具体考察了太阳辐照强度、工质流量、环境风速、吸热管管径等对集热效率的影响.结果表明:太阳能集热器的集热效率随太阳辐照强度的增加而增大,随工质流量的增加而增大,存在最佳的吸热管管径使得集热效率最大.研究结果将为太阳能集热器的设计提供参考依据.","authors":[{"authorName":"高志超","id":"f3bf517b-7544-4f41-a0b9-76b6df050886","originalAuthorName":"高志超"},{"authorName":"隋军","id":"5cbf8e38-bdff-4655-8f01-780bd005f6df","originalAuthorName":"隋军"},{"authorName":"刘启斌","id":"14775ea9-c57b-4567-a33c-ebbe15e17468","originalAuthorName":"刘启斌"},{"authorName":"王亚龙","id":"1b782aea-4798-44aa-85ab-ec253aaac89b","originalAuthorName":"王亚龙"},{"authorName":"赵芫桦","id":"196a2865-576a-4427-ac92-a8b37b7c5d86","originalAuthorName":"赵芫桦"},{"authorName":"宿建峰","id":"649ce906-4923-4a04-ac95-617088fe0af5","originalAuthorName":"宿建峰"},{"authorName":"李和平","id":"d5fb3505-8426-4ec1-ab77-c3b4352a4163","originalAuthorName":"李和平"},{"authorName":"金红光","id":"57d8c10b-7094-4190-b0d0-cb9559966452","originalAuthorName":"金红光"}],"doi":"","fpage":"541","id":"66db96a9-b596-40d8-b215-ab6ec229e2f3","issue":"4","journal":{"abbrevTitle":"GCRWLXB","coverImgSrc":"journal/img/cover/GCRWLXB.jpg","id":"32","issnPpub":"0253-231X","publisherId":"GCRWLXB","title":"工程热物理学报 "},"keywords":[{"id":"6bfa65df-adf0-4454-9b2b-ed4d8237e4f1","keyword":"槽式太阳能集热器","originalKeyword":"槽式太阳能集热器"},{"id":"7178104c-b91b-4d80-9fce-996ca0abc273","keyword":"数值模拟","originalKeyword":"数值模拟"},{"id":"a649fd89-670b-4188-8307-73f9f251024b","keyword":"集热效率","originalKeyword":"集热效率"}],"language":"zh","publisherId":"gcrwlxb201004001","title":"30 m2槽式太阳能集热器性能模拟研究","volume":"31","year":"2010"},{"abstractinfo":"本文采用真空集热管在抛物槽式太阳能平台上进行了实验研究,传热工质为YD300型合成导热油.实验测定了该集热管的散热损失,并数值模拟了吸热管表面的能流密度分布.以此为边界条件研究了该集热管的换热性能.结果表明,循环工质温度和环境温度之差为180℃时,散热损失为220 W/m;该集热器吸热管表面圆周方向能流分布集中,流量对温度分布影响较大,当太阳直射辐照为1000 W/m2,导热油温度为200℃,流量为0.5 kg/s时,吸热管圆周方向最大温差50℃左右,当流量增加到2.0 kg/s时,最大温差减小到20℃左右.","authors":[{"authorName":"王亚龙","id":"e2e45d8e-1693-4be1-9cff-10ff534e689a","originalAuthorName":"王亚龙"},{"authorName":"刘启斌","id":"e3a2c644-6d11-4e00-8d02-0fd90664292a","originalAuthorName":"刘启斌"},{"authorName":"隋军","id":"1a5d2cc9-a0ac-43c5-a939-cb0c7124d85a","originalAuthorName":"隋军"},{"authorName":"赵芫桦","id":"76719362-9b0b-4966-9790-e5229f49f34f","originalAuthorName":"赵芫桦"},{"authorName":"宿建峰","id":"d2793683-cc5b-47d9-b7e0-86daf517ecb8","originalAuthorName":"宿建峰"},{"authorName":"李和平","id":"34b7e7d0-9559-4090-9559-1f526937910a","originalAuthorName":"李和平"},{"authorName":"金红光","id":"6156d337-365e-4c53-a720-69fafb363bf9","originalAuthorName":"金红光"}],"doi":"","fpage":"1261","id":"80a3c6c9-d61d-4351-b934-5fddba4d8d68","issue":"8","journal":{"abbrevTitle":"GCRWLXB","coverImgSrc":"journal/img/cover/GCRWLXB.jpg","id":"32","issnPpub":"0253-231X","publisherId":"GCRWLXB","title":"工程热物理学报 "},"keywords":[{"id":"add93abb-c0af-4414-a7fd-2f2f4797fa8a","keyword":"抛物槽式太阳能集热器","originalKeyword":"抛物槽式太阳能集热器"},{"id":"ff0910de-2420-4283-9f13-521ebbbc3f19","keyword":"散热损失","originalKeyword":"散热损失"},{"id":"249da683-9239-48de-b057-48059ca4c2f2","keyword":"能流密度","originalKeyword":"能流密度"},{"id":"82f64aa9-a18f-428f-9490-ba82c2a9953b","keyword":"温度分布","originalKeyword":"温度分布"}],"language":"zh","publisherId":"gcrwlxb201008001","title":"抛物槽式太阳能集热器集热实验及模拟研究","volume":"31","year":"2010"},{"abstractinfo":"联合循环系统改造(Combined Cycle-Repowering)是常规燃煤电站更新最科学最有效的方法之一。本文对两种典型的联合循环系统(排气助燃型FF-Repowering和给水加热型FWH- Repowering)进行了热力学系统模拟研究,得到了随燃机汽机功比变化排气助燃型系统效率单调变化以及给水加热型系统效率存在极值点的现象,并发现了一定燃机汽机功比下给水加热型效率大于排气助燃型的特殊规律。通过对联合循环系统改造各种因素的综合分析,揭示了上述特殊规律的热力学机理,澄清了有关研究的误区。该理论研究对采用联合循环系统技术改造常规电站具有指导意义。","authors":[{"authorName":"刘泽龙","id":"09d77bda-d9d6-4faa-a1f0-b5584b8009b1","originalAuthorName":"刘泽龙"},{"authorName":"金红光","id":"005d8456-0108-406c-b9b5-d3f9b11f38bc","originalAuthorName":"金红光"},{"authorName":"蔡睿贤","id":"dbe2f473-f77e-4ac0-818c-eb3275c7cce9","originalAuthorName":"蔡睿贤"},{"authorName":"蒋洪德","id":"10e8a97d-6020-4284-9628-ed5306cce7ee","originalAuthorName":"蒋洪德"},{"authorName":"林汝谋","id":"95ef774b-50f1-48c4-bb93-a04b4c7e4984","originalAuthorName":"林汝谋"}],"doi":"","fpage":"1","id":"0348c064-7632-4b2a-9eb0-5ccd09b89fb3","issue":"1","journal":{"abbrevTitle":"GCRWLXB","coverImgSrc":"journal/img/cover/GCRWLXB.jpg","id":"32","issnPpub":"0253-231X","publisherId":"GCRWLXB","title":"工程热物理学报 "},"keywords":[{"id":"53d9ed44-6f35-4951-a415-7686dd758728","keyword":"联合循环","originalKeyword":"联合循环"},{"id":"99f46d7d-f959-437c-a924-d9fc59acb961","keyword":"给水加热","originalKeyword":"给水加热"},{"id":"28e85b20-d16d-473a-afa4-7810cb17881e","keyword":"排气助燃","originalKeyword":"排气助燃"},{"id":"efab7740-3d51-4668-8bad-42b21dcd3b40","keyword":"电站更新改造","originalKeyword":"电站更新改造"}],"language":"zh","publisherId":"gcrwlxb200101001","title":"改造常规汽轮机电站联合循环系统的热力学分析","volume":"22","year":"2001"},{"abstractinfo":"本文提出一种基于中低温太阳能与甲醇热化学互补的分布式冷热电供能系统.基于热力学基本定律,对系统作了能量平衡分析和`平衡分析,探讨了变太阳辐照下系统的热力性能和储气蓄能的变化特性规律.结果表明:设计工况下,系统的一次能源效率达89.36%,`效率达到47.10%,太阳直射辐照强度从500 W/m2变化到900 W/m2时,系统一次能源效率和冷、热、电功率输出保持稳定.本文的研究成果为高效利用中低温太阳能热化学技术与分布式冷热电能源系统集成技术提供了新途径.","authors":[{"authorName":"许达","id":"35c3e44f-3324-441b-b3c9-330e6e9a8dcb","originalAuthorName":"许达"},{"authorName":"刘启斌","id":"28e0ee15-cfea-47a4-bfdb-914706824c3c","originalAuthorName":"刘启斌"},{"authorName":"隋军","id":"41e74962-ccb6-43b5-9e6b-ceb3265a00d3","originalAuthorName":"隋军"},{"authorName":"金红光","id":"a7bc0ad8-9479-4fd4-b646-a4baeadd01b9","originalAuthorName":"金红光"}],"doi":"","fpage":"1601","id":"0976bdb0-c0a3-41e2-a4d0-69939e19bd27","issue":"9","journal":{"abbrevTitle":"GCRWLXB","coverImgSrc":"journal/img/cover/GCRWLXB.jpg","id":"32","issnPpub":"0253-231X","publisherId":"GCRWLXB","title":"工程热物理学报 "},"keywords":[{"id":"fc3a82be-9f62-4a27-986c-18bc52b38514","keyword":"中低温太阳能","originalKeyword":"中低温太阳能"},{"id":"707922cf-80f8-4002-9b07-3139784e52f4","keyword":"太阳能热化学","originalKeyword":"太阳能热化学"},{"id":"c584e3c6-de04-43b0-bcf0-2b1790c3fc04","keyword":"甲醇分解","originalKeyword":"甲醇分解"},{"id":"bafdacb9-f44b-422e-ad2f-fcbf188fe5d3","keyword":"分布式供能系统","originalKeyword":"分布式供能系统"},{"id":"aaaa3e38-d21b-4957-b8d3-768e1ee0e0fb","keyword":"储能","originalKeyword":"储能"}],"language":"zh","publisherId":"gcrwlxb201309001","title":"太阳能与甲醇热化学互补的分布式能源系统研究","volume":"34","year":"2013"},{"abstractinfo":"本文提出一种新颖的甲醇化学链燃烧动力循环系统.该系统利用空气压缩的间冷热提供甲醇和Fe2O3反应热,将间冷的低温热转换为高品位化学能;同时得到预冷的空气吸收燃烧产物Fe2O3的显热,降低了还原反应的温度.与常规化学链循环相比,该循环利用间冷的热量代替高温Fe2O3的显热提供还原反应的反应热,系统内能量品位匹配更加合理.根据图像(火用)分析方法,阐明了甲醇化学链燃烧过程(火用)损失减少和间冷热品位提升的机理.本文对新循环进行了分析,并以常规化学链循环为参照,研究了其性能.新循环的效率较高,同时可以实现CO2无能耗的分离.","authors":[{"authorName":"张筱松","id":"8ea49605-8aad-4f1b-92a4-bc40470d1ec0","originalAuthorName":"张筱松"},{"authorName":"金红光","id":"69740735-20b1-469f-91b4-460a1c8f2e1b","originalAuthorName":"金红光"},{"authorName":"洪慧","id":"0433b549-c8b8-46ad-b8c5-733d78912fa6","originalAuthorName":"洪慧"},{"authorName":"韩巍","id":"68a6a542-6175-4004-acfe-82eb5d5a3e90","originalAuthorName":"韩巍"}],"doi":"","fpage":"721","id":"0b0cba7c-41fa-4250-9f85-38a95f000796","issue":"5","journal":{"abbrevTitle":"GCRWLXB","coverImgSrc":"journal/img/cover/GCRWLXB.jpg","id":"32","issnPpub":"0253-231X","publisherId":"GCRWLXB","title":"工程热物理学报 "},"keywords":[{"id":"ee47fa70-a92e-403c-8f84-eb7cf6bd584b","keyword":"间冷","originalKeyword":"间冷"},{"id":"d3dcd899-f148-454b-ac71-1c835bb9480b","keyword":"甲醇化学链","originalKeyword":"甲醇化学链"},{"id":"0855727b-0b8a-44f0-9320-8f7460ddff99","keyword":"CO2减排","originalKeyword":"CO2减排"},{"id":"f57aabdf-eab2-4747-a6ac-5f41efdfd5d9","keyword":"甲醇","originalKeyword":"甲醇"},{"id":"bb41bb0f-d90e-4599-948a-40afb8eb73a4","keyword":"能源品位","originalKeyword":"能源品位"},{"id":"e029d498-aedd-404f-bc12-73c51118c58e","keyword":"热力循环","originalKeyword":"热力循环"}],"language":"zh","publisherId":"gcrwlxb200705001","title":"基于甲醇化学链燃烧的新型燃气轮机间冷循环","volume":"28","year":"2007"},{"abstractinfo":"本文提出IGCC系统两层次和联合循环两大块交叉迭代的整体综合优化的新思路和新方法,对大型IGCC电站系统进行模块化建模和模拟分析,总结和揭示了IGCC系统综合优化的规律,得出了许多有实用参考价值的结论.","authors":[{"authorName":"段立强","id":"e6c69edf-00ed-4e41-80c2-502c72fc22e0","originalAuthorName":"段立强"},{"authorName":"林汝谋","id":"b4bc63cf-f938-40b3-9b72-d8379b294371","originalAuthorName":"林汝谋"},{"authorName":"蔡睿贤","id":"afa6781d-e5e0-41f8-b6ac-0a4d1b01e06c","originalAuthorName":"蔡睿贤"},{"authorName":"金红光","id":"1d724e6f-1753-4ef6-9774-914a29073f9a","originalAuthorName":"金红光"}],"doi":"","fpage":"265","id":"0c03cd80-ef6e-4388-a4e3-6a41fc3123e9","issue":"3","journal":{"abbrevTitle":"GCRWLXB","coverImgSrc":"journal/img/cover/GCRWLXB.jpg","id":"32","issnPpub":"0253-231X","publisherId":"GCRWLXB","title":"工程热物理学报 "},"keywords":[{"id":"69787066-9163-41c4-ad2c-bf4fe7be1b27","keyword":"整体煤气化","originalKeyword":"整体煤气化"},{"id":"75530634-611b-41b4-a71b-2a3345c5ea20","keyword":"联合循环","originalKeyword":"联合循环"},{"id":"6a148c66-0e64-4b17-a938-f291ba32848b","keyword":"整体综合优化","originalKeyword":"整体综合优化"}],"language":"zh","publisherId":"gcrwlxb200103001","title":"整体煤气化联合循环(IGCC)系统整体综合优化","volume":"22","year":"2001"},{"abstractinfo":"本文研究开拓基于全工况特性的IGCC联合循环系统设计优化新方法.应用全工况和独立变量概念探讨分析系统设计优化特点和全工况特性规律,寻求系统分析方法和评价准则创新,寻求突破热力系统传统的ISO基准工况设计框架的途径,开展相关实例比较分析研究以验证新方法的有效性.研究表明,应用新方法设计优化得出的IGCC系统性能特性更加贴近实际运行情况与需求.本文研究成果将为相关系统设计优化与运行控制提供有效手段.","authors":[{"authorName":"林汝谋","id":"750b8386-845c-4883-86d0-886a93563f87","originalAuthorName":"林汝谋"},{"authorName":"段立强","id":"d43e73df-0717-419a-957f-56fd56e68423","originalAuthorName":"段立强"},{"authorName":"金红光","id":"afe15976-84dc-4903-8da5-d4bceca1659f","originalAuthorName":"金红光"},{"authorName":"邓润亚","id":"a27da112-b943-4cce-84ce-8fea3d049726","originalAuthorName":"邓润亚"},{"authorName":"邓世敏","id":"fb09f217-2c41-4c60-b967-f92518f23353","originalAuthorName":"邓世敏"}],"doi":"","fpage":"541","id":"1283de3c-c45a-474b-b5c8-f102dfc0d876","issue":"4","journal":{"abbrevTitle":"GCRWLXB","coverImgSrc":"journal/img/cover/GCRWLXB.jpg","id":"32","issnPpub":"0253-231X","publisherId":"GCRWLXB","title":"工程热物理学报 "},"keywords":[{"id":"ddf695d9-5a81-4f79-855b-40c364ef03c5","keyword":"IGCC系统","originalKeyword":"IGCC系统"},{"id":"0c45cfe7-31c7-47f2-9b6b-6a52c8cd82b3","keyword":"全工况特性","originalKeyword":"全工况特性"},{"id":"c794cf1f-bb52-4fa6-8e4e-c80adb12b86f","keyword":"设计优化方法","originalKeyword":"设计优化方法"}],"language":"zh","publisherId":"gcrwlxb200404001","title":"IGCC系统全工况设计优化新方法","volume":"25","year":"2004"},{"abstractinfo":"提出一种新型发电系统,通过煤和天然气的互补利用来减少能量转化过程的不可逆损失。煤气化炉采用空气和水蒸气做氧化剂,碳转化率约为60%,未转化部分形成半焦,半焦燃烧释放的热量驱动天然气重整反应,制取合成气。煤部分气化所得气化煤气和半焦燃烧驱动天然气重整所得合成气混合,作为联合循环的燃料。结果显示,新系统的热效率为51.5%,效率为50.3%,天然气折合发电效率为61%。新系统为高效合理利用煤和天然气提供了一种新途径。","authors":[{"authorName":"孙流莉","id":"bdee15e2-6358-46c7-9465-6501ea9156c6","originalAuthorName":"孙流莉"},{"authorName":"韩巍","id":"a7f1e45e-6c50-49c1-8866-dee5a9a7c057","originalAuthorName":"韩巍"},{"authorName":"金红光","id":"9fdd0917-577d-4097-bb0f-6ce404d03ea0","originalAuthorName":"金红光"},{"authorName":"林汝谋","id":"0c563140-8c0c-4a1e-817a-feacf64cedd0","originalAuthorName":"林汝谋"}],"doi":"","fpage":"1261","id":"173017bb-4940-4bdb-9368-e1f437649834","issue":"8","journal":{"abbrevTitle":"GCRWLXB","coverImgSrc":"journal/img/cover/GCRWLXB.jpg","id":"32","issnPpub":"0253-231X","publisherId":"GCRWLXB","title":"工程热物理学报 "},"keywords":[{"id":"3cd42bbb-c57c-4206-b456-cfdd66b23cad","keyword":"煤与天然气","originalKeyword":"煤与天然气"},{"id":"eccd511a-ccfd-4456-94ec-9722caf08070","keyword":"互补利用","originalKeyword":"互补利用"},{"id":"08596ad9-b53f-41d3-9372-4bc6009b23db","keyword":"联合循环","originalKeyword":"联合循环"},{"id":"76c35096-0471-4909-a9ff-39c4e289299e","keyword":"化学能","originalKeyword":"化学能"}],"language":"zh","publisherId":"gcrwlxb201108001","title":"一类煤与天然气互补利用的新型发电系统","volume":"32","year":"2011"},{"abstractinfo":"本文通过对以燃气轮机回热循环为动力系统的冷热电联产系统进行热力学分析,对几种常用的评价准则进行了比较.通过分析,认为能量利用系数将冷、热、电等各股能量等价看待,(火用)效率过分看重能量的作功能力,折合发电效率过分关注冷、热能的输出,均不适于冷热电联产系统的评价;节能率反映的是输入能量的使用情况,经济(火用)效率在某种程度上是经济性的表现,比较适于冷热电联产系统的评价.研究中发现,燃气轮机温比有利于系统性能的提高,但针对不同的目标有不同的最佳压比;在节能率的使用中需要明确参照系统的性能.","authors":[{"authorName":"冯志兵","id":"eb5b7f1a-e4c2-42f1-84ac-84f95c029358","originalAuthorName":"冯志兵"},{"authorName":"金红光","id":"c15c40df-ff2c-4901-bccd-4be4a5ee36d4","originalAuthorName":"金红光"}],"doi":"","fpage":"725","id":"21ef154a-27cf-4f71-9d35-04475354980d","issue":"5","journal":{"abbrevTitle":"GCRWLXB","coverImgSrc":"journal/img/cover/GCRWLXB.jpg","id":"32","issnPpub":"0253-231X","publisherId":"GCRWLXB","title":"工程热物理学报 "},"keywords":[{"id":"c80f5275-1c50-4e84-b0f7-6603e30d92cb","keyword":"冷热电联产系统","originalKeyword":"冷热电联产系统"},{"id":"f18ae435-e589-4830-9d31-6254c90cf922","keyword":"燃气轮机","originalKeyword":"燃气轮机"},{"id":"d2ac7fa2-0d32-4190-925f-82435200b015","keyword":"回热循环","originalKeyword":"回热循环"},{"id":"c63fb452-69d9-4fb4-b5b0-5f7ad724d4bd","keyword":"评价准则","originalKeyword":"评价准则"}],"language":"zh","publisherId":"gcrwlxb200505002","title":"冷热电联产系统的评价准则","volume":"26","year":"2005"},{"abstractinfo":"本文开拓性地提出了一种新型多种化石能源输入(煤和天然气)、多种产品输出(电力和化工产品)的多功能能源系统.该系统将天然气/水蒸气重整过程和煤的燃烧过程有机整合,用煤燃烧替代了传统重整过程清洁的燃料天然气和弛放气燃烧,实现了煤和天然气的综合互补利用;将甲醇生产系统与发电系统有机整合,实现了化工系统弛放气的梯级利用同时,对甲醇生产系统余热进行了更加有效的利用.研究表明生产相同量的甲醇和电,多功能系统比参比系统少消耗20%的天然气.本文工作为煤和天然气综合高效利用提供了新途径.","authors":[{"authorName":"韩巍","id":"6859ea4c-7906-4b86-b11b-d9120fe3f95e","originalAuthorName":"韩巍"},{"authorName":"金红光","id":"670a4ffc-7dff-468d-bd1f-6110be2c5fa7","originalAuthorName":"金红光"}],"doi":"","fpage":"361","id":"24f2a248-bb57-4053-aa5d-23b01ad9e1fc","issue":"3","journal":{"abbrevTitle":"GCRWLXB","coverImgSrc":"journal/img/cover/GCRWLXB.jpg","id":"32","issnPpub":"0253-231X","publisherId":"GCRWLXB","title":"工程热物理学报 "},"keywords":[{"id":"5877f9f3-d6d8-479a-b389-07cddb55a78e","keyword":"多种能源输入","originalKeyword":"多种能源输入"},{"id":"3dc90f4e-bdea-46c7-9326-1eaef0373773","keyword":"多种产品输出","originalKeyword":"多种产品输出"},{"id":"529c34ab-e860-4c7e-89c6-45689be88eff","keyword":"多功能能源系统","originalKeyword":"多功能能源系统"}],"language":"zh","publisherId":"gcrwlxb200603001","title":"新型双燃料多功能能源系统开拓研究","volume":"27","year":"2006"}],"totalpage":143,"totalrecord":1424}