{"currentpage":1,"firstResult":0,"maxresult":10,"pagecode":5,"pageindex":{"endPagecode":5,"startPagecode":1},"records":[{"abstractinfo":"采用原位氧化聚合法合成了不同质量比的纳米SnO2/聚苯胺复合材料,运用扫描电镜(SEM)、原子力显微镜(AFM)和X射线衍射(XRD)对材料进行表征,并在304不锈钢表面制备了纳米SnO2/聚苯胺的环氧涂层,利用电化学工作站和浸泡增重试验研究其耐蚀性能。结果表明,纳米SnO2/聚苯胺复合材料的防腐蚀效果优于聚苯胺,且当SnO2在复合材料中的质量分数为4%时,防腐蚀性能最佳。依据不锈钢表面复合涂层的结构,建立合理的等效电路,结合电化学阻抗谱数据,研究了纳米SnO2/聚苯胺/环氧复合涂层耐蚀性增强的机制。","authors":[{"authorName":"云虹","id":"9a8da00d-9f07-4698-9938-8ac5bdf76c26","originalAuthorName":"云虹"},{"authorName":"张志国","id":"08a7e855-a271-4f35-8eca-349a800105af","originalAuthorName":"张志国"},{"authorName":"钱超","id":"458ac636-9751-4b55-892b-aa123e59b050","originalAuthorName":"钱超"},{"authorName":"徐群杰","id":"d4e68756-5926-4654-99b8-bc350033e9f6","originalAuthorName":"徐群杰"}],"doi":"","fpage":"1092","id":"f6275626-f263-4970-a988-9f6e10d32a5e","issue":"11","journal":{"abbrevTitle":"FSYFH","coverImgSrc":"journal/img/cover/FSYFH.jpg","id":"25","issnPpub":"1005-748X","publisherId":"FSYFH","title":"腐蚀与防护"},"keywords":[{"id":"4924b8c2-d686-4903-86dd-b0e3a2ba453c","keyword":"导电聚合物","originalKeyword":"导电聚合物"},{"id":"e4d29a81-36b3-4373-bb3c-f3bf4c4ae6cc","keyword":"环氧树脂","originalKeyword":"环氧树脂"},{"id":"b6b0e402-4719-4026-974c-c5e8c3675a93","keyword":"纳米SnO2/PANI复合材料","originalKeyword":"纳米SnO2/PANI复合材料"},{"id":"2a9ca187-481d-45cd-b2fd-f49b0d1b06ab","keyword":"腐蚀防护","originalKeyword":"腐蚀防护"}],"language":"zh","publisherId":"fsyfh201411007","title":"纳米SnO 2/聚苯胺/环氧复合涂层的防腐蚀性能","volume":"","year":"2014"},{"abstractinfo":"采用溶胶-凝胶法制备SnO2的乙醇溶液胶体,在140℃条件下,获得乙醇修饰的无定形纳米SnO2,将该纳米SnO2溶于甲基丙烯酸甲酯(MMA)单体中,聚合制备得到SnO2/PMMA复合材料.采用X衍射(XRD)、傅立叶红外(FTIR)、示差扫描量热-热重法联用(DSC-TG)、粒度仪和透射电镜(TEM)等方法对纳米SnO2、纳米SnO2乙醇溶液及其SnO2/PMMA复合材料进行分析表征.扫描电子显微镜(SEM)对实验获得的透明的SnO2/PMMA复合材料进行了分析,表明纳米SnO2能够较好的分散在PMMA中.","authors":[{"authorName":"江国栋","id":"8ad85200-c65f-4235-b127-e15c63ea3d94","originalAuthorName":"江国栋"},{"authorName":"王庭慰","id":"17e303e3-45f8-4945-b46b-436696cfcd09","originalAuthorName":"王庭慰"},{"authorName":"沈晓冬","id":"ad8e91d2-c050-43de-8c7f-3a4000c7e91e","originalAuthorName":"沈晓冬"}],"doi":"10.3969/j.issn.1005-0299.2005.05.027","fpage":"544","id":"7b6ea68c-4225-4ea4-a179-37bc035a2f29","issue":"5","journal":{"abbrevTitle":"CLKXYGY","coverImgSrc":"journal/img/cover/CLKXYGY.jpg","id":"14","issnPpub":"1005-0299","publisherId":"CLKXYGY","title":"材料科学与工艺"},"keywords":[{"id":"a8eab5e5-b746-46c9-913c-d3b6bcdb3f39","keyword":"二氧化锡","originalKeyword":"二氧化锡"},{"id":"17491adc-9098-400d-a192-be81e9266c6a","keyword":"溶胶-凝胶","originalKeyword":"溶胶-凝胶"},{"id":"4b0e8178-6151-4110-ab4a-f48773788189","keyword":"透明","originalKeyword":"透明"},{"id":"f3414020-3318-4d53-a8ec-5b6695d4cd5f","keyword":"复合材料","originalKeyword":"复合材料"}],"language":"zh","publisherId":"clkxygy200505027","title":"Sol-Gel法制备纳米SnO2掺杂PMMA透明复合材料","volume":"13","year":"2005"},{"abstractinfo":"采用水热合成法制备了类球状二氧化锡纳米粉体,再经原位聚合工艺制备聚苯胺(PANI)/SnO2纳米复合材料。利用红外光谱(IR)、X射线衍射(XRD)、扫描电镜(SEM)和透射电镜(TEM)表征了材料的结构和形貌,用四探针测试了材料的电导率,考察了反应物配比对复合材料导电性及光催化吸附性能的影响。结果表明,PANI与SnO2之间存在着化学键的结合,形成交联的孔状结构。复合材料兼具良好的导电性和较高的光催化吸附性能,掺杂30%SnO2纳米粒子时,复合材料的电导率为3.57 S/cm,相比于掺杂态聚苯胺提高了将近十倍,对萘酚绿B的吸附降解率达98%,且循环使用率较高(80%±6%)。","authors":[{"authorName":"徐惠","id":"b49a982b-025f-4846-8567-259f210a350d","originalAuthorName":"徐惠"},{"authorName":"彭振军","id":"843f975c-07d1-46f8-8571-b4c597a1a753","originalAuthorName":"彭振军"},{"authorName":"黄剑","id":"a7333be3-e63e-4233-a8b5-8ae18772c2cf","originalAuthorName":"黄剑"}],"doi":"","fpage":"133","id":"ab0a4b07-4114-44f9-9769-6c85d30d6458","issue":"4","journal":{"abbrevTitle":"GFZCLKXYGC","coverImgSrc":"journal/img/cover/GFZCLKXYGC.jpg","id":"31","issnPpub":"1000-7555","publisherId":"GFZCLKXYGC","title":"高分子材料科学与工程"},"keywords":[{"id":"81370d3a-e71d-49fa-b7a9-405a9ddd8e01","keyword":"聚苯胺","originalKeyword":"聚苯胺"},{"id":"604cbaa9-1bdf-416d-aa3b-e0af28607b5f","keyword":"二氧化锡","originalKeyword":"二氧化锡"},{"id":"4a5a9b6e-536e-4f24-ace2-e54b6e8d7cfa","keyword":"电导率","originalKeyword":"电导率"},{"id":"f8a8e86f-b303-4a6d-ac0d-b9759e02edef","keyword":"吸附降解率","originalKeyword":"吸附降解率"}],"language":"zh","publisherId":"gfzclkxygc201204035","title":"PANI/SnO_2导电复合材料的制备及光催化吸附性能","volume":"28","year":"2012"},{"abstractinfo":"以氯化亚锡和高岭土为原料,通过醇解,氨解反应,制备了纳米SnO2/高岭土复合材料.利用XRD、TEM测试技术对复合材料进行了表征.结果表明,550℃焙烧后复合材料中的SnO2粒子平均粒径在20nm左右,较纯材料中的SnO2粒子团聚现象减少.将复合材料作为锂离子负极材料进行了研究,与纯氧化锡相比这种复合材料具有较高可逆容量(达741mAh/g),同时循环性能也得到了提高.","authors":[{"authorName":"廖立勇","id":"f10097af-1da1-4e8d-b508-927539ca386b","originalAuthorName":"廖立勇"},{"authorName":"单忠强","id":"fcaa51f2-d3de-4166-a1b9-e0ca166de481","originalAuthorName":"单忠强"},{"authorName":"宋承鹏","id":"656fb9bb-bc59-40fb-929f-dd055b5247d9","originalAuthorName":"宋承鹏"},{"authorName":"田建华","id":"1e1edba3-a0ba-471c-92e7-1489d76012dd","originalAuthorName":"田建华"}],"doi":"","fpage":"1920","id":"9ca45915-ac3f-4693-86f4-d333b9be7dfc","issue":"12","journal":{"abbrevTitle":"GNCL","coverImgSrc":"journal/img/cover/GNCL.jpg","id":"33","issnPpub":"1001-9731","publisherId":"GNCL","title":"功能材料"},"keywords":[{"id":"ba7812e5-7903-4e11-b07f-fc794ce481a3","keyword":"SnO2","originalKeyword":"SnO2"},{"id":"b874e597-869f-4283-8a85-8bc8567fdeab","keyword":"锂离子","originalKeyword":"锂离子"},{"id":"3459722e-c3c2-494c-a066-211a64833211","keyword":"负极","originalKeyword":"负极"},{"id":"18f42aeb-aea9-49cc-a8ee-db7fbf926f29","keyword":"高岭土","originalKeyword":"高岭土"}],"language":"zh","publisherId":"gncl200612019","title":"SnO2/高岭土复合材料作为锂离子负极材料的研究","volume":"37","year":"2006"},{"abstractinfo":"本文采用SnC2O4·2H2O为Sn源和乙二醇(ethylene glycol,EG)为反应介质的多元醇法,制备得到SnO2包覆多壁碳纳米管复合材料(SnO2/MWNTs),其中SnO2是通过EG中溶解的O2氧化Sn2+反应生成的.没有加入MWNTs的情况下,SnC2O4·2H2O的水解反应生成Sn6O4(OH)4,SnC2O4·2H2O与EG之间的聚合反应生成聚羟基乙酸锡,由于水解反应降低了EG中Sn2+的浓度,使得聚羟基乙酸锡产量较低.加入MWNTs后,仅有少量聚羟基乙酸锡生成,且没有Sn6O4(OH)4生成,主要产物为包覆在MWNTs表面的SnO2.这是由于SnO2在EG中的溶解度极低,随O2氧化Sn2+反应进行,EG中的Sn2+浓度不断降低,Sn6O4(OH)4的溶解结晶平衡不断向溶解的方向进行,并最终转化为SnO2.以上对多元醇法制备SnO2/MWNTs合成机理的理解,将有助于采用类似的方法设计合理条件制备得到其他种类金属氧化物包覆碳纳米管的复合材料.","authors":[{"authorName":"孙雪","id":"a96b27ce-0cbd-464c-926e-d071a35203e6","originalAuthorName":"孙雪"},{"authorName":"余慧龙","id":"f2a315d7-9162-4887-b9c3-7b17107cdae6","originalAuthorName":"余慧龙"},{"authorName":"张宝友","id":"6199222f-95ab-4390-89f3-eb4e82616bd0","originalAuthorName":"张宝友"},{"authorName":"储一","id":"f517007e-006a-490b-9081-1c38894cba64","originalAuthorName":"储一"},{"authorName":"王福平","id":"ca207293-6af3-41e7-bb17-a96de7fbbbd4","originalAuthorName":"王福平"}],"doi":"10.3969/j.issn.1005-0299.2008.01.028","fpage":"112","id":"e621c7f3-1b9f-49d9-9d92-337a0fedd323","issue":"1","journal":{"abbrevTitle":"CLKXYGY","coverImgSrc":"journal/img/cover/CLKXYGY.jpg","id":"14","issnPpub":"1005-0299","publisherId":"CLKXYGY","title":"材料科学与工艺"},"keywords":[{"id":"f89da27f-3bbb-47b1-95ea-cd85ce07860c","keyword":"二氧化锡","originalKeyword":"二氧化锡"},{"id":"71b204a1-aa89-42a7-adc2-44a765d92587","keyword":"碳纳米管","originalKeyword":"碳纳米管"},{"id":"1073c5ac-3515-41e9-9ba1-7946af766587","keyword":"多元醇","originalKeyword":"多元醇"},{"id":"0811838b-d3f1-43af-8964-54ddf703fa34","keyword":"纳米复合材料","originalKeyword":"纳米复合材料"}],"language":"zh","publisherId":"clkxygy200801028","title":"多元醇方法制备SnO2包覆碳纳米管复合材料","volume":"16","year":"2008"},{"abstractinfo":"利用Ag/SnO2复合材料界面高分辨透射电镜分析结果,运用第一性原理对复合材料界面结合进行模拟计算.结果表明,反应合成后Ag6O2(101)面与SnO2(110)面存在晶格匹配,结合能,布居分布和态密度均表明这两个自由表面相结合与实验现象吻合,电子差分密度进一步证实未分解的Ag6O2向Sn提供富氧环境,利于纳米SnO2颗粒生成,最后分析界面表层原子的弛豫状态.","authors":[{"authorName":"杜晔平","id":"a3734f33-0c3d-499c-a090-992f7c217344","originalAuthorName":"杜晔平"},{"authorName":"陈敬超","id":"7a6b9d85-4b8e-4102-ab8e-6f38834ee170","originalAuthorName":"陈敬超"},{"authorName":"冯晶","id":"eb06825a-88af-43af-a8da-5e1b00e8e2d8","originalAuthorName":"冯晶"},{"authorName":"周晓龙","id":"4c7160cb-a85f-4eb0-a646-fb156c9f4b83","originalAuthorName":"周晓龙"},{"authorName":"于杰","id":"faaec491-ca72-41af-a7d9-cec9b0b18b44","originalAuthorName":"于杰"}],"doi":"","fpage":"980","id":"d74b8efd-d06a-41c0-98ae-47a7dc5b5ad3","issue":"6","journal":{"abbrevTitle":"XYJSCLYGC","coverImgSrc":"journal/img/cover/XYJSCLYGC.jpg","id":"69","issnPpub":"1002-185X","publisherId":"XYJSCLYGC","title":"稀有金属材料与工程"},"keywords":[{"id":"8d7b79e9-3204-4c78-952e-4cd0ae793379","keyword":"第一原理","originalKeyword":"第一原理"},{"id":"70bc7961-95d6-4a56-881d-a9bc124bce3c","keyword":"界面","originalKeyword":"界面"},{"id":"7e835944-c04b-449a-b192-65b37b9f46a6","keyword":"结合能","originalKeyword":"结合能"},{"id":"01fa6bad-de6c-4e5c-a8fb-572de089c492","keyword":"弛豫","originalKeyword":"弛豫"},{"id":"003f638e-ae09-46a1-90e3-be8e16329fc8","keyword":"Ag/SnO2","originalKeyword":"Ag/SnO2"}],"language":"zh","publisherId":"xyjsclygc201006009","title":"反应合成法制备Ag/SnO2复合材料中Ag6O2/SnO2低指数界面研究","volume":"39","year":"2010"},{"abstractinfo":"采用无模板水热法,以四磺基酞菁铜(CuTSPc)敏化SnO2制备了CuTSPc/SnO2纳米介孔复合材料,通过X射线衍射、透射电镜、氮气吸附-脱附、紫外-可见光谱和傅里叶变换红外光谱等对复合材料进行了表征,并以罗丹明B (RhB)为目标降解物考察了其低功率(15 W光源)可见光光催化活性及循环使用性. 结果表明, CuTSPc周环的磺基与SnO2表面的锡离子形成双齿螯合, 0.1 mol% (CuTSPc与SnO2物质的量比) CuTSPc/SnO2复合材料的比表面积和平均孔径分别为236 m2/g和2.6 nm, 反应180 min时可见光降解率高达87%, 循环使用率较高(87%±5%).","authors":[{"authorName":"郭龙发","id":"02dba35e-3282-46ce-b7e0-467bc545dc07","originalAuthorName":"郭龙发"},{"authorName":"潘海波","id":"3cd66684-b58a-4753-a938-06f7c8b0a8ea","originalAuthorName":"潘海波"},{"authorName":"沈水发","id":"0c15bb25-260a-400b-9c42-22000c77453a","originalAuthorName":"沈水发"},{"authorName":"黄金陵","id":"94fbe85b-f93e-4a10-936f-7a70460d9c17","originalAuthorName":"黄金陵"}],"doi":"","fpage":"53","id":"1924ebfa-6b20-4728-ac60-c6420034ac59","issue":"1","journal":{"abbrevTitle":"CHXB","coverImgSrc":"journal/img/cover/CHXB.jpg","id":"18","issnPpub":"0253-9837","publisherId":"CHXB","title":"催化学报 "},"keywords":[{"id":"7f6d7363-f237-4d9e-bf9a-6ca9aeed81a9","keyword":"四磺基酞菁铜","originalKeyword":"四磺基酞菁铜"},{"id":"c24f8238-ff13-4904-b3ff-e169c4263474","keyword":"氧化锡","originalKeyword":"氧化锡"},{"id":"9dcbcb7a-a75d-4120-9034-39791764b6d3","keyword":"介孔","originalKeyword":"介孔"},{"id":"0c02353c-69fa-4b36-9a74-cf2ede12859d","keyword":"无模板水热合成","originalKeyword":"无模板水热合成"},{"id":"1b393061-18ff-4a59-9e6e-f6227181ae02","keyword":"键合作用","originalKeyword":"键合作用"},{"id":"287411ac-df23-4ca2-aae5-e65f9a1aaa24","keyword":"可见光光催化","originalKeyword":"可见光光催化"}],"language":"zh","publisherId":"cuihuaxb200901012","title":"CuTSPc/SnO2纳米介孔复合材料的合成及其可见光光催化活性","volume":"30","year":"2009"},{"abstractinfo":"以溶胶-凝胶方法制备纳米SnO2/TiO2复合粉体,并用XRD、TEM等方法对其进行了表征,给出了相关的工艺参数.研究了纳米SnO2及SnO2/TiO2复合材料的红外吸收特性.结果表明,本文制备的纳米SnO2/TiO2复合材料在4000~1500cm-1和1000~400cm-1范围内有较好的红外吸收.","authors":[{"authorName":"杨海刚","id":"9e5bd757-6b13-4ce3-b335-3874f8d5128c","originalAuthorName":"杨海刚"},{"authorName":"项金钟","id":"7d76651d-ca2e-4bbf-8220-f7053e11450b","originalAuthorName":"项金钟"},{"authorName":"杨爱民","id":"dc0668c4-8ee6-432e-b9e7-6dc375b0696c","originalAuthorName":"杨爱民"},{"authorName":"文建华","id":"2117cf8f-ba46-4ddc-bc3f-bb4ba0efab8b","originalAuthorName":"文建华"},{"authorName":"方静华","id":"8bbf5fc8-6037-4b11-9a6c-4c7644513df9","originalAuthorName":"方静华"},{"authorName":"陈秀华","id":"52549c50-7e4e-46a7-a57f-7b3bdbccee37","originalAuthorName":"陈秀华"}],"doi":"","fpage":"215","id":"5cf03843-790c-4e0a-b45d-26dc4f17392c","issue":"z1","journal":{"abbrevTitle":"GNCL","coverImgSrc":"journal/img/cover/GNCL.jpg","id":"33","issnPpub":"1001-9731","publisherId":"GNCL","title":"功能材料"},"keywords":[{"id":"3d83027e-8af8-4ddb-b334-3ecacf4bf22c","keyword":"溶胶-凝胶","originalKeyword":"溶胶-凝胶"},{"id":"cdfc4ce9-32c8-428b-80d4-0799a216687c","keyword":"SnO2/TiO2","originalKeyword":"SnO2/TiO2"},{"id":"dd907dac-b5c5-4523-905b-cc1629bc51dd","keyword":"纳米复合材料","originalKeyword":"纳米复合材料"},{"id":"50ccb9a8-b030-40d2-94b6-f19da615c342","keyword":"红外吸收","originalKeyword":"红外吸收"}],"language":"zh","publisherId":"gncl2004z1045","title":"纳米SnO2/TiO2复合粉体制备及其红外特性研究","volume":"35","year":"2004"},{"abstractinfo":"在紫外灯辐照下,以噻吩和光化学制备的SnO2为主要原料,通过光照诱导噻吩单体在SnO2表面原位聚合,制得了含有共轭聚合物结构的聚噻吩/SnO2 (PTH/SnO2)复合材料,并通过X射线衍射、扫描电镜、EDS能谱、红外光谱等手段对复合材料进行了表征.以甲基橙为主要目标污染物,考察了PTH/SnO2复合材料在紫外光和太阳光下光催化降解污染物的性能.结果表明,与纯SnO2相比,PTH/SnO2复合材料有较好的光催化性能.","authors":[{"authorName":"王红娟","id":"7768c3b5-de5d-4ff7-a087-191e89f72115","originalAuthorName":"王红娟"},{"authorName":"阮丽君","id":"247d9eca-3021-4b9c-b889-d67e0dcfc74d","originalAuthorName":"阮丽君"},{"authorName":"李文龙","id":"49b790b5-ed3e-4d3f-989e-859af51d6851","originalAuthorName":"李文龙"}],"doi":"10.11896/j.issn.1005-023X.2015.06.007","fpage":"31","id":"3980a55f-6c97-4efc-a15b-dcfc2c4de47c","issue":"6","journal":{"abbrevTitle":"CLDB","coverImgSrc":"journal/img/cover/CLDB.jpg","id":"8","issnPpub":"1005-023X","publisherId":"CLDB","title":"材料导报"},"keywords":[{"id":"f425f1b2-0a01-470b-9ff7-51673d547d3b","keyword":"聚噻吩","originalKeyword":"聚噻吩"},{"id":"4c952cb0-d082-42cc-8f79-85c866c717f2","keyword":"二氧化锡","originalKeyword":"二氧化锡"},{"id":"a0617ff0-1981-48bd-bfe6-21662dc47d7d","keyword":"复合材料","originalKeyword":"复合材料"},{"id":"cfb0bf64-9075-4cc3-862d-32a91f0a7900","keyword":"甲基橙","originalKeyword":"甲基橙"},{"id":"eb65e9b8-b4fc-4a07-97eb-a76069613a17","keyword":"光催化","originalKeyword":"光催化"}],"language":"zh","publisherId":"cldb201506007","title":"聚噻吩/SnO2复合材料的光化学制备及光催化性能","volume":"29","year":"2015"},{"abstractinfo":"以Co(Ⅱ)为模板,通过邻苯二腈在SnO2纳米颗粒表面直接原位合成酞菁钴(Co(Ⅱ)Pc)/SnO2纳米复合材料,并采用XRD、TG-DTA、UV-Vis和FT-IR等测试技术对合成产物进行了表征,同时对材料进行了可见光光催化反应实验.实验结果表明,采用原位合成方法能够在SnO2纳米表面上原位生成Co(Ⅱ)Pc,在可见光照射下,复合材料首先由Copc吸收可见光,激发电子通过Co-O键注入至纳米SnO2导带,并与O2气作用形成超氧自由基,在150 min内使罗丹明B的可见光降解率达87.1%,且其催化活性经10次循环使用,稳定性较好.","authors":[{"authorName":"王芳","id":"75c7107f-0e52-4554-b5e3-38e7af6c74f1","originalAuthorName":"王芳"},{"authorName":"潘海波","id":"e46cda49-1e91-43cf-bfab-26f76b9c9851","originalAuthorName":"潘海波"},{"authorName":"黄金陵","id":"693a5405-f096-4850-b9ea-abd4fa76b1d2","originalAuthorName":"黄金陵"},{"authorName":"陈耐生","id":"97210d9e-2048-4bcf-80de-915b61e29d48","originalAuthorName":"陈耐生"},{"authorName":"范燕华","id":"8d1bfc3c-b110-40c8-bdc7-b020822c7efb","originalAuthorName":"范燕华"}],"doi":"10.3969/j.issn.1000-0518.2006.03.004","fpage":"246","id":"b1a4f714-6ca6-475a-a881-d3bb399a8d17","issue":"3","journal":{"abbrevTitle":"YYHX","coverImgSrc":"journal/img/cover/YYHX.jpg","id":"73","issnPpub":"1000-0518","publisherId":"YYHX","title":"应用化学"},"keywords":[{"id":"1889d141-ac2c-4571-8ee4-37d3cd3f0fc2","keyword":"SnO2","originalKeyword":"SnO2"},{"id":"02f61eba-4bef-4f5e-983d-aaca3b071ad6","keyword":"酞菁钴","originalKeyword":"酞菁钴"},{"id":"ded0e5a1-d7e3-469c-8220-ae58d8496071","keyword":"纳米复合材料","originalKeyword":"纳米复合材料"},{"id":"bc0f668e-6b00-40cf-9025-815b667f1b63","keyword":"原位合成","originalKeyword":"原位合成"},{"id":"3e403f73-ef0a-40b6-92a9-21a5a4caa437","keyword":"光催化","originalKeyword":"光催化"}],"language":"zh","publisherId":"yyhx200603004","title":"酞菁钴/SnO2纳米复合材料的原位合成及可见光光催化","volume":"23","year":"2006"}],"totalpage":12933,"totalrecord":129323}