Xiwen SONG
,
Yongwang ZHAO
,
Zhefeng WANG
,
Jun PENG
,
Wenguang ZHAO
,
Shengli AN
材料科学技术(英文)
SmxGdyCe1-x-yO2-δ (x+y=0.2 and x=0, 0.04, 0.08, 0.12, 0.16, 0.2) nanopowders were prepared by a coprecipitation method. The zeta potential and sedimentation volume of Ce(OH)4 aqueous dispersions at different pH values were measured. The isoelectric point (IEP) of Ce(OH)4 suspensions is 7.0. The maximum potential value of -18.5 mV and maximum sedimentation volume of 19 ml are reached at pH=10. The evolution behaviors of the xSm(OH)3•yGd(OH)3•(1-x-y)Ce(OH)4 dried powders in the heating process was characterized by DTA/TG and XRD. The powders decompose to ceria based solid solution at a temperature below 300℃ and forms cubic fluorite structure ceria at about 650℃. The properties of SmxGdyCe1-x-yO2-δ solid solutions were characterized by XRD, TEM and BET. The lattice parameter of doped CeO2 increases linearly with increasing Sm3+ substitution (or decreasing Gd3+ substitution). The particle size of the doped ceria powders is from 5 nm to 10 nm
关键词:
Coprecipitation
,
null
,
null
,
null
,
null
Ning ZHANG
,
Hongqiang RU
,
Xudong SUN
,
Qingkui CAI
材料科学技术(英文)
The α-SiC in 0.5μm size powders were coated with Al2O3 and Y2O3 by a coprecipitation coating (CPC) method for fabrication of SiC/YAG composites. The same powder preparation was carried out by conventional mechanical mixing (MM) method for comparison. Two kinds of SiC/YAG composites were manufactured by pressureless sintering using the different powders, named CPC composite and MM composite thereafter respectively. It is shown that the CPC composite has the advantages of homogeneous distribution of YAG phase and of being sintered to high density at a low temperature, 100℃ lower than that of MM composite. The strength (573 MPa) and hardness (23.3 GPa) of the CPC composite are significantly higher than those (323 MPa and 13.5 GPa) of the MM composite, respectively.
关键词:
Coprecipitation
,
null
,
null
王正宝
,
张琪
,
路晓飞
,
陈双佳
,
刘春杰
催化学报
doi:10.1016/S1872-2067(14)60231-X
在低碱度下采用共沉淀法成功制备了非负载型Ru-Zn催化剂,用于苯选择加氢制环己烯反应.固定氢氧化钠沉淀剂的量,考察了不同氯化锌加入量对催化剂结构和催化性能的影响,采用N2吸附、X射线衍射和程序升温还原等手段对催化剂进行了表征.同时考察了选用具有最佳锌含量的Ru-Zn催化剂时搅拌速度和硫酸锌添加剂等对催化反应性能的影响,最后考察了催化剂多次使用时的反应性能.研究表明, Zn含量16.7%(质量分数)的Ru-Zn催化剂具有最佳的催化性能;在ZnSO4水溶液(0.45 mol/L)中,优化反应条件(哈氏合金釜,1200 r/min,150oC, H2压5 MPa)下反应45 min,苯转化率57%时环己烯选择性可达80%(收率超过45%).钌催化剂中ZnO晶体对于环己烯选择性达到80%非常重要.催化剂回收循环反应5次时反应性能基本不变,表明低碱度下制备的催化剂具有良好的稳定性,显示了工业化应用前景.
关键词:
共沉淀法
,
低碱度
,
苯
,
选择加氢
,
钌锌催化剂