王铭浩
,
苏宏久
,
周谨
,
王树东
催化学报
doi:10.1016/S1872-2067(12)60609-3
使用浸涂法和氨气吸收沉积法制备了新型用于苯选择加氢的具有蛋壳型分布的Ru/Al2O3-ZrO2-NiO/堇青石蜂窝整体催化剂,且在固定床整体反应器中对其性能进行了测试.该催化剂显示了较优的选择性和稳定性,并且在低的ZnSO4浓度(0.5%问题)下环己烯产物收率可达24.7%.采用N2吸附-脱附法,电感耦合等离子体发射光谱,光学显微镜,扫描电子显微镜及能量色散X射线光谱仪等技术研究了影响催化剂性能的因素.结果表明,NiO的引入减少了涂层中的微孔含量,有利于在低的添加剂浓度下提高环己烯选择性.ZrO2的存在抑制了涂层的烧结,保证涂层在1373K高温焙烧后仍有较大的比表面积.Ru的蛋壳分布、薄的涂层厚度、较少的微孔含量、较大的比表面积和狭窄的孔分布可能是影响整体蜂窝催化剂中该特殊催化行为的重要因素.
关键词:
整体催化剂
,
涂层
,
苯
,
环己烯
,
选择性加氢
,
尖晶石
,
氧化锆
,
氧化镍
孙海杰
,
江厚兵
,
李帅辉
,
王红霞
,
潘雅洁
,
董英英
,
刘寿长
,
刘仲毅
催化学报
doi:10.1016/S1872-2067(11)60489-0
采用共沉淀法制备了一系列不同Mn含量的纳米Ru-Mn催化剂,考察了纳米ZrO2作分散剂时它们催化苯选择加氢制环己烯的反应性能,并采用X射线衍射、透射电镜、N2物理吸附、X射线荧光、原子吸收光谱和俄歇电子能谱等手段对催化剂进行了表征.结果表明,Ru-Mn催化剂上Mn以Mn3O4存在于Ru的表面上.在加氢过程中,Mn3O4可以与浆液中ZnSO4发生化学反应生成一种难溶性的(Zn(OH)2)3(ZnSO4)(H2O)3盐.该盐易化学吸附在Ru催化剂表面上,从而在提高Ru催化剂上环己烯选择性起关键作用.当催化剂中Mn含量为5.4%时,环己烯收率为61.3%,同时具有良好的稳定性和重复使用性能.
关键词:
苯
,
选择加氢
,
环己烯
,
钌
,
锰
,
二氧化锆
,
锌
蔡雯佳
,
周琰
,
包任烈
,
岳斌
,
贺鹤勇
催化学报
doi:10.1016/S1872-2067(11)60459-2
采用共合成法制备了一系列不同硅氨基含量的介孔氧化硅SBA-15,在其孔道中引入Keggin型钨磷酸,且其含量随硅氨基含量的增加而增加.考察了不同处理温度下杂多酸的热稳定性,发现焙烧后钨物种能在SBA-15孔道内高度分散.以H2O2为氧化剂,研究了该催化剂在环己烯环氧化反应中的催化活性,考察了杂多酸负载量和焙烧温度对催化活性的影响.结果表明,400℃处理后的钨磷酸催化剂具有高的反应活性和重复使用性能.
关键词:
12-磷钨酸
,
硅氨基化
,
SBA-15
,
环氧化
,
环己烯
孙海杰
,
李帅辉
,
张元馨
,
江厚兵
,
曲良龙
,
刘寿长
,
刘仲毅
催化学报
doi:10.1016/S1872-2067(12)60637-8
采用化学还原法制备了苯选择加氢制环己烯催化剂Ru-B/ZrO2,考察了Cr,Mn,Fe,Co,Ni,Cu和Zn等过渡金属的添加对Ru-B/ZrO2催化剂性能的影响.结果表明,这些过渡金属的添加均可提高Ru-B/ZrO2催化剂中的B含量.B的修饰及第二种金属或金属氧化物的集团效应和配位效应导致Ru-B/ZrO2催化剂活性降低和环己烯选择性升高.当Co/Ru原子比为0.06时,Ru-Co-B/ZrO2催化剂上反应25 min苯转化率为75.8%时,环己烯选择性和收率分别为82.8%和62.8%.在双釜串联连续反应器中和优化反应条件下,Ru-Co-B/ZrO2催化剂使用419h内苯转化率稳定在40%左右,环己烯选择性和收率分别稳定在73%和30%左右.
关键词:
苯
,
选择加氢
,
环己烯
,
钌
,
过渡金属
,
硼
Maryam Moosavifar
,
Alieh Navid Arbat
,
Zolfaghar Rezvani
,
Kamellia Nejati
催化学报
doi:10.1016/S1872-2067(15)60908-1
采用模板合成法制备了在脱铝Y分子筛纳米腔中含有Co, Mn,和Co/Mn混合物的三核金属簇合物的复合物催化剂,包括[Mn3(O)(CH3COO)6-(py)3]-Y,[Co3(O)(CH3COO)6-(py)3],[Co2Mn(O)(CH3COO)6-(py)3]-Y和[CoMn2(O)(CH3COO)6-(py)3]-Y],并运用傅里叶变换红外光谱、紫外-可见光光谱、前场扫描电镜、X射线衍射和原子吸收光谱对其进行了表征.包裹的金属簇合物在环己烯环氧化反应中表现出较高的催化活性,反应以H2O2/O2为氧化剂,在加热机械搅拌下进行,所得环氧化物产率在82.5%?90.7%.在该催化体系中, NaBr用作氧化助剂可以提高反应性能.在所制多相催化体系中,含单核的金属簇合物催化活性更高,其中以Mn3(O)-DAZY化合物的效率最高.各催化剂活性顺序为Mn3(O)-DAZY> Co3(O)-DAZY> Mn2Co(O)-DAZY> MnCo2(O)-DAZY.
关键词:
环己烯
,
环氧化
,
金属簇合物
,
脱铝Y分子筛
,
钴
薛伟
,
赵贺潘
,
姚洁
,
李芳
,
王延吉
催化学报
doi:10.1016/S1872-2067(15)61076-2
碳基固体酸是一种可替代液体质子酸的无定形碳材料,具有酸密度大、催化活性高等优点.花生壳是农业废弃物,以其为原料制备碳基固体酸具有成本低、原料可再生和环境友好等优点.甲酸环己酯是重要的化工产品,可用于香料和涂料工业.传统的甲酸环己酯制备方法是以环己醇和甲酸为原料,在酸催化条件下进行酯化反应而得.近年来,随着环己烯的大规模生产,利用环己烯与甲酸直接酯化制备甲酸环己酯引起广泛关注.此外,甲酸环己酯还可通过水解反应转变为环己醇.环己醇可以进一步转化为己二酸和己内酰胺,从而用于化纤工业中尼龙-6和尼龙-66的生产.目前,工业上采用环己烯水合反应制备环己醇,由于热力学限制,并受到环己烯与水相容性差的影响,环己烯单程转化率仅为~10%,循环量较大,能耗很高.以环己烯为原料,通过甲酸环己酯制备环己醇克服了上述环己烯直接水合的缺点,具有很好的发展前景.我们研究组使用HZSM-5分子筛作为催化剂,采用“一锅法”由环己烯经甲酸环己酯制备环己醇,环己醇收率可达40%.但是环己烯在酸性条件下可发生低聚反应,生成的副产物会堵塞HZSM-5孔道,造成催化剂失活.
本文在前述研究基础上,以花生壳为原料,经过碳化、磺化过程制备得到了碳基固体酸PSCSA.采用傅里叶变换红外光谱(FT-IR)、扫描电子显微镜(SEM)、X射线衍射(XRD)、拉曼光谱(Raman)、热重分析(TG)、X射线光电子能谱(XPS)和元素分析等方法表征了PSCSA的结构、微观形貌、热稳定性以及酸性质,考察了其催化环己烯与甲酸酯化反应性能,并与几种常见的固体酸催化剂进行了比较.
FT-IR结果显示,经磺化后, PSCSA表面出现了–SO3H和–COOH基团. XPS结果则说明PSCSA表面所有的S元素均属于–SO3H,可利用元素分析测定S含量,进而得到–SO3H密度.此外,由于花生壳属于天然物质,成分并不均一,因此PSCSA的SEM照片中不同部位颗粒的微观形貌差异较大.采用PSCSA作为催化剂,考察了其催化环己烯与甲酸酯化反应性能,优化了反应条件.在酸/烯摩尔比为3/1, PSCSA用量0.07 g/mL环己烯,413 K反应1 h,环己烯转化率为88.4%,甲酸环己酯选择性为97.3%;副产物包括环己醇、二聚环己烯和环己基醚等.比较了PSCSA与几种常用固体酸如HZSM-5、离子交换树脂Amberlyst-15和Nafion NR50的催化性能,其中, Amberlyst-15催化性能最优,在393 K下反应,环己烯转化率亦达91.5%,甲酸环己酯选择性98.1%;但是,高昂的价格限制了其在工业上的大规模应用.与HZSM-5相比, PSCSA催化的环己烯与甲酸酯化反应的初始速率较低,反应时间超过30 min后,环己烯转化率迅速增加.在本反应中, PSCSA在甲酸存在条件下发生溶胀,使得大量的甲酸分子插入到碳材料本体中;而环己烯与甲酸具有较好的相容性,因此环己烯可以进入到碳材料本体中,与活性中心–SO3H充分接触,从而具有较高的反应速率.并且,由于溶胀需要一定的时间,在反应初期溶胀不充分时,环己烯、甲酸与活性中心接触有限,因此反应较慢;反应一定时间后, PSCSA充分溶胀,更多的–SO3H参与到反应中,反应速率加快. PSCSA重复使用性较好,第3次使用时环己烯转化率为68.6%;继续使用,催化剂不再失活. PSCSA在反应初期失活是–SO3H流失造成的.构成PSCSA的多环芳香烃可以部分溶解到溶剂中,进而带走其包含的–SO3H. PSCSA的后期活性稳定则说明可以流失的活性中心是有限的.
关键词:
碳基固体酸
,
花生壳
,
环己烯
,
酯化
,
甲酸环己酯