Quan'an LI
,
Yungui CHEN
,
Mingjing TU
材料科学技术(英文)
Effect of stoichiometry on microstructures, electrochemical properties and PCT characteristics of the alloys Ml(Ni0.71Co0.15-Al0.06Mn0.08)x (Ml=Lanthanum-rich Michmetal, x=4.6-5.2) have been investigated. The lattice constants a, c and cell volumes of non-stoichiometric alloys are bigger than those of the stoichiometric alloy. With the increasing stoichiometry x, the value of a decreases, and the value of c and cell volume increases except for those of the stoichiometric alloy; the plateau pressure of PCT curve, discharge capacity and cycling stability all increase. The alloy with x=5.2 shows the highest discharge capacity and the best cycling stability among the studied alloys.
关键词:
Hydrogen storage alloy
,
null
,
null
,
null
,
null
Xianhua HOU
金属学报(英文版)
Nano-level Sn-Ni alloy thin-film electrode materials prepared by magnetic sputtering technology are characterized with X-ray diffraction (XRD), atom force microscopy (AFM) and scanning electron microscopy (SEM). The charge/discharge and cyclic voltammograms (CV) of the films electrodes are tested by the battery testing system of high precision. The results indicate that the materials prepared by direct current (DC) and radio frequency (RF) methods differ greatly in their performance. Ni3Sn2 alloy phase constitutes the main components prepared by DC method, the particles on the surface are tiny and show steady cycling performance, the deficiency is that they have low initial efficiency and small discharge capacity of 72 % and 108 mA.h/g, respectively. Contrary to the former, Ni3Sn4 alloy phase constitutes the main components prepared by RF method, the particles on the surface appear comparatively larger, their discharge capacity did not decline in the first 15 times, keeping above 500 mA·h/g, but began to decline after 15 times.
关键词:
Lithium ion battery
,
Sn-Ni 合金
,
电化学性能 lithium ion battery
,
Sn-Ni alloy
,
electrochemical property