李红娟
,
王建军
,
王华
,
孟华
钢铁研究学报
针对钢铁企业富余煤气的频繁波动对自备电厂能耗及煤气平衡影响严重,且难以通过建立机制模型进行预测的问题,依据HP滤波和Elman神经网络性质建立了HP(2)-Elman预测模型.并根据自备电厂能源利用的特点,建立拟合模型求解锅炉的经济运行负荷,在此基础上对富余煤气进行优化调度.模型应用表明:所建预测模型对煤气柜位预测平均相对误差小于2.8%,自备电厂煤气供入量30、45、60个点预测平均相对误差分别为1.7%、1.6%、1.6%.根据预测结果进行的优化调度可为煤气柜位调整及自备电厂锅炉负荷分配提供操作依据,一年按照330天计算,可多产蒸汽约100495t,节能约11670481kg标煤.
关键词:
HP滤波
,
Elman神经网络
,
优化调度
毕志敏
,
王焱
钢铁研究学报
doi:10.13228/j.boyuan.issn1001-0963.20160313
针对目前的板形缺陷识别方法精度不高、识别速度慢的问题,根据Elman神经网络模型可以反映系统动态特性,而且可以逼近任意非线性函数的特点,提出了一种利用改进的遗传算法优化Elman神经网络,使其泛化能力强、学习速度快、识别精度高,并建立板形缺陷模式识别模型的方法.为了验证该方法的识别能力,在隐层节点数与学习次数相同的条件下,分别与遗传算法优化的Elman网络和BP网络模型进行板形识别仿真对比分析.试验结果表明,改进遗传算法优化的Elman神经网络模型对板形缺陷识别精度高于BP网络等模型,并且具有收敛速度快的优点.
关键词:
改进遗传算法
,
Elman神经网络
,
板形缺陷识别