{"currentpage":1,"firstResult":0,"maxresult":10,"pagecode":5,"pageindex":{"endPagecode":5,"startPagecode":1},"records":[{"abstractinfo":"综述了近年来本课题组依据材料化学工程研究思想,对含TiO2(B)(一种比金红石和锐钛矿相结构更松散的氧化钛晶型)介孔氧化钛材料在制各、结构和性能方面所取得的研究进展,该介孔材料由二钛酸钾经水合、离子交换和热处理得到,具有良好原子尺度晶格匹配界面特征的锐钛矿和TiO2(B)核壳结构.研究表明,该介孔材料在兼备高比表面积、高晶化孔壁和高热稳定性的同时,还表现出良好的纳米颗粒担载稳定性,在光催化、油品加氧精制、药物载体、固体酸催化和电化学电容器等方面已凸显出良好的应用潜力和推广价值,目前该新型含TiO2(B)介孔氧化钛材料已经实现低成本、规模化制备.","authors":[{"authorName":"陈闪山","id":"894583eb-10f7-442a-ab38-3dc3fd2b560c","originalAuthorName":"陈闪山"},{"authorName":"朱银华","id":"ad3fc12c-cb5b-4602-9515-a13c026cf959","originalAuthorName":"朱银华"},{"authorName":"李伟","id":"b2566ce7-cdf1-460e-be60-90dadcc9beeb","originalAuthorName":"李伟"},{"authorName":"刘维佳","id":"1026e8ad-5cd8-4059-b860-7a34beaa6db4","originalAuthorName":"刘维佳"},{"authorName":"李力成","id":"e3652846-9ef0-49ec-bc3d-d4520c344066","originalAuthorName":"李力成"},{"authorName":"杨祝红","id":"27af8b79-1f89-4612-bc2d-33f37e3726a3","originalAuthorName":"杨祝红"},{"authorName":"刘畅","id":"d70cf603-fc8d-4ae1-95f4-3c638f855b7d","originalAuthorName":"刘畅"},{"authorName":"姚文俊","id":"060a7f82-4a9f-440c-8357-dc0b585a538f","originalAuthorName":"姚文俊"},{"authorName":"陆小华","id":"409629f4-6635-41eb-a246-30629b46f456","originalAuthorName":"陆小华"},{"authorName":"冯新","id":"46abf1ca-dd26-4d65-9661-8474fb3abb1a","originalAuthorName":"冯新"}],"doi":"10.1016/S1872-2067(09)60073-5","fpage":"605","id":"a0e0ad10-2178-44d6-ba20-062bb4480711","issue":"6","journal":{"abbrevTitle":"CHXB","coverImgSrc":"journal/img/cover/CHXB.jpg","id":"18","issnPpub":"0253-9837","publisherId":"CHXB","title":"催化学报 "},"keywords":[{"id":"0972f02d-b5bf-4431-a674-6c400a50c3af","keyword":"介孔","originalKeyword":"介孔"},{"id":"f31befdc-9a55-4eae-a8a4-95de57b7d00d","keyword":"氧化钛","originalKeyword":"氧化钛"},{"id":"de10b67e-49d9-41f7-99d3-a1503eb7d774","keyword":"比表面积","originalKeyword":"比表面积"},{"id":"74f6556d-2ae5-47ba-952d-218839f0eb49","keyword":"热稳定性","originalKeyword":"热稳定性"},{"id":"e4881c87-190f-4f8d-ad37-862af26dc13a","keyword":"光催化","originalKeyword":"光催化"},{"id":"f2d73e91-6e0e-415f-84a5-d24e81c4039d","keyword":"加氢脱硫","originalKeyword":"加氢脱硫"},{"id":"f9a89055-fea0-4f3c-9afd-d36a84c834ca","keyword":"药物载体","originalKeyword":"药物载体"}],"language":"zh","publisherId":"cuihuaxb201006001","title":"含TiO2(B)介孔氧化钛材料的制备、特性和应用","volume":"31","year":"2010"},{"abstractinfo":"高效TiO2基光催化材料的开发一直是催化领域的研究热点,主要的策略是如何有效地分离光生载流子.制备多晶相的TiO2材料可引入异质/相结结构使电子与空穴朝不同方向移动,从而避免电子与空穴复合;另外,在TiO2中掺杂其他金属或非金属也可以有效地降低电子与空穴的复合率,掺杂的元素作为电子捕获阱俘获光生电子,以实现电子空穴的有效分离.近些年,作为一种全新的掺杂剂,氧空穴可以有效改善TiO2的光催化活性,所制TiO2具有可见光的全光谱吸收能力,因此该类TiO2呈现出黑色.通过上述方法均可以制备出高活性TiO2基光催化材料,如果能够将这些方法耦合一起,则可能制备出活性更高的光催化剂.因此,本文将异相结结构和空穴掺杂耦合起来,用多孔钛酸盐衍生物在H2中高温焙烧制得一种全新的黑色TiO2(B)/锐钛矿双晶TiO2–x纳米纤维.不同于其他TiO2基光催化材料,该样品仅由Ti和O元素组成,通过Ti和O元素的组合,形成了双晶结构和空穴掺杂两种特殊的结构,借助场发射(FESEM)、拉曼光谱(Raman)、氮气物理吸脱附、X射线光电子能谱(XPS)、热重(TG)、紫外可见漫反射光谱(UV-Vis)和荧光光谱(PL)等表征分析了样品的结构及其光催化性能间构效关系. FESEM结果显示,黑色TiO2(B)/锐钛矿双晶TiO2–x为长1–5mm、宽0.2mm的纤维结构, Raman结果表明,锐钛矿相在特征波段(140 cm–1左右)和TiO2(B)的特征波段(220–260 cm–1)均发生蓝移,说明该两相中均存在氧空穴;该样表面未检测到Ti3+,因此氧空穴可能分散在TiO2(B)和锐钛矿相的体相中.根据黑色TiO2(B)/锐钛矿双晶TiO2–x和白色TiO2(B)/锐钛矿双晶TiO2的失重差,估算出前者的O/Ti原子比为1.97.光催化降解甲基橙实验结果显示,黑色TiO2(B)/锐钛矿双晶TiO2–x的光催化活性是白色双晶TiO2的4.2倍,锐钛矿TiO2的10.5倍,且连续反应10次后未出现失活现象,显示出了良好的光催化稳定性.前期,我们已经证明了白色TiO2(B)/锐钛矿双晶TiO2由于具有TiO2(B)和锐钛矿的异相结结构,致使其电子空穴有效地分离,从而表现出优异的光催化活性;本文的PL结果显示,由于氧空穴的引入,异相结与氧空穴两者共同作用,进一步促进了黑色TiO2(B)/锐钛矿双晶TiO2–x电子与空穴的有效分离,因此黑色TiO2(B)/锐钛矿双晶TiO2–x表现出高的光催化活性.由于其特殊的结构,黑色TiO2(B)/锐钛矿双晶TiO2–x纳米纤维将在环境与能源领域表现出良好的应用前景.","authors":[{"authorName":"李力成","id":"f3fe4c69-a7ea-4bad-a739-90f9ca7561a5","originalAuthorName":"李力成"},{"authorName":"石康中","id":"6d6c3618-ee2d-44da-a325-a5d394d0e454","originalAuthorName":"石康中"},{"authorName":"涂睿","id":"e3b112e7-2834-4bca-92da-cc7bb95d0f51","originalAuthorName":"涂睿"},{"authorName":"钱祺","id":"3adde8d5-2cb2-44b9-98db-2ac3802f51f1","originalAuthorName":"钱祺"},{"authorName":"李东","id":"e693ce3b-ec9b-48b7-8b87-870c3be586ca","originalAuthorName":"李东"},{"authorName":"杨祝红","id":"2b08c9dc-c722-477c-bd88-c654912c3b86","originalAuthorName":"杨祝红"},{"authorName":"陆小华","id":"dfa56c7a-ee08-4c87-b1b1-842e19015f58","originalAuthorName":"陆小华"}],"doi":"10.1016/S1872-2067(15)60946-9","fpage":"1943","id":"25bdc9e5-fba6-480a-9288-ce3491071657","issue":"11","journal":{"abbrevTitle":"CHXB","coverImgSrc":"journal/img/cover/CHXB.jpg","id":"18","issnPpub":"0253-9837","publisherId":"CHXB","title":"催化学报 "},"keywords":[{"id":"12e6952b-41b8-4c07-99cc-3e19d854d4d2","keyword":"黑色氧化钛","originalKeyword":"黑色氧化钛"},{"id":"d5b48505-ca4d-497c-b446-c6d04023cfa9","keyword":"双晶","originalKeyword":"双晶"},{"id":"6ca610aa-5d0a-474b-9d73-99a2f30566ea","keyword":"光催化","originalKeyword":"光催化"},{"id":"e240a373-7c7d-444d-bdb2-48fa8c04cf82","keyword":"氧空穴","originalKeyword":"氧空穴"}],"language":"zh","publisherId":"cuihuaxb201511018","title":"具有高光催化活性的黑色TiO2(B)/锐钛矿双晶TiO2-x纳米纤维","volume":"","year":"2015"},{"abstractinfo":"以二钛酸钾晶须为前驱体,通过固相烧结工艺制备了介孔 TiO2晶须,然后使用沉积沉淀法将 Au 纳米颗粒担载于其上,并采用低温 N2吸附-脱附、X 射线衍射及透射电镜等技术对催化剂的形貌和结构进行了表征,以 NaBH4还原对硝基苯酚(PNP)为探针反应,评价了催化剂的活性及稳定性.结果表明,500°C 热处理前后,介孔 TiO2负载的 Au 纳米颗粒的平均粒径变化不大,且催化 PNP 还原活性得到了很好的保持.这主要与介孔 TiO2晶须独特的双晶构型及介孔结构有关.","authors":[{"authorName":"马璇璇","id":"7cd2f294-4479-49ca-891c-e7bb1b287738","originalAuthorName":"马璇璇"},{"authorName":"朱银华","id":"d9c3c923-dd63-4f73-b695-456aed2e5926","originalAuthorName":"朱银华"},{"authorName":"李力成","id":"5d3f86fd-fb1f-4a02-9d52-0aae1e071df6","originalAuthorName":"李力成"},{"authorName":"王昌松","id":"5770b259-9078-4ae5-8b00-78b88d3f5e44","originalAuthorName":"王昌松"},{"authorName":"陆小华","id":"de324987-e26a-4928-9ffa-2bddc1415d87","originalAuthorName":"陆小华"},{"authorName":"杨祝红","id":"2638e509-d481-4b61-8e41-ecf2313d27f8","originalAuthorName":"杨祝红"}],"doi":"10.1016/S1872-2067(11)60415-4","fpage":"1480","id":"5b248b0a-34a8-4c28-9db8-a5ac68513ebc","issue":"9","journal":{"abbrevTitle":"CHXB","coverImgSrc":"journal/img/cover/CHXB.jpg","id":"18","issnPpub":"0253-9837","publisherId":"CHXB","title":"催化学报 "},"keywords":[{"id":"68fa4af6-4939-4729-a235-9901eb62c8e8","keyword":"纳米金","originalKeyword":"纳米金"},{"id":"a50e90b9-05b2-4480-9603-5362f3da430f","keyword":"热稳定性","originalKeyword":"热稳定性"},{"id":"048fe5d3-845f-4459-ba3d-ce317fbfa2e7","keyword":"介孔氧化钛","originalKeyword":"介孔氧化钛"},{"id":"a5044075-efca-469e-96f7-55ef3000e19c","keyword":"双晶","originalKeyword":"双晶"},{"id":"f135538c-1e39-49d2-8794-7e9344e43ad5","keyword":"对硝基苯酚","originalKeyword":"对硝基苯酚"},{"id":"3b3d4316-c0d9-4130-89e8-608c7c62deb1","keyword":"还原","originalKeyword":"还原"}],"language":"zh","publisherId":"cuihuaxb201209008","title":"介孔 TiO2晶须担载 Au 的热稳定性","volume":"","year":"2012"},{"abstractinfo":"An Au-Cu bimetal catalyst was prepared by deposition-precipitation (urea) of gold and copper species on mesoporous TiO2 and activation with H2. The sample was characterized by N2 adsorption/desorption, X-ray diffraction, ultraviolet-visible spectroscopy, and high-resolution transmission electron microscopy. The results showed that the Au and Cu species formed an Au-Cu alloy and were well dis-persed on the mesoporous TiO2. According to CO oxidation test results, it was found that the catalytic activity of gold was enhanced by cop-per. The Au-Cu bimetal catalyst supported on mesoporous TiO2 showed better catalytic stability in CO oxidation than the Au catalyst sup-ported on mesoporous TiO2 and the nonporous TiO2-supported catalysts. This may be related to the effects of both Au-Cu alloying and the mesostructure of TiO2.","authors":[{"authorName":"李力成","id":"1c6da341-9d0f-4782-8d85-3eebb4e34379","originalAuthorName":"李力成"},{"authorName":"王昌松","id":"9af685de-72f4-4c76-86cb-b5b36bc5bc3a","originalAuthorName":"王昌松"},{"authorName":"马璇璇","id":"6fc9c370-0beb-4e5f-bdf1-09b0008ef3fd","originalAuthorName":"马璇璇"},{"authorName":"杨祝红","id":"0a50f635-d95f-4366-9102-1a39a2b481ca","originalAuthorName":"杨祝红"},{"authorName":"陆小华","id":"7b124863-31db-4375-8317-ad7a654a352d","originalAuthorName":"陆小华"}],"doi":"10.1016/S1872-2067(11)60471-3","fpage":"1778","id":"70c255ad-8873-4b2a-ada6-9acb46d30d01","issue":"11","journal":{"abbrevTitle":"CHXB","coverImgSrc":"journal/img/cover/CHXB.jpg","id":"18","issnPpub":"0253-9837","publisherId":"CHXB","title":"催化学报 "},"keywords":[{"id":"9d3d7d44-b567-4d72-b178-06864d3bbf50","keyword":"gold","originalKeyword":"gold"},{"id":"4c50b521-adee-474d-951d-9085723a2001","keyword":"copper","originalKeyword":"copper"},{"id":"4ff620c3-f9af-45d9-a108-5adc8a1a8456","keyword":"mesoporous titania","originalKeyword":"mesoporous titania"},{"id":"c2ff4bf5-a0ab-4281-aa22-d78dcab238a7","keyword":"stability","originalKeyword":"stability"},{"id":"3a838632-803b-4d41-b0bb-9e7fd145565a","keyword":"carbon monoxide","originalKeyword":"carbon monoxide"},{"id":"8853c8a7-4fe7-40a4-8681-63e5aa91b4ec","keyword":"oxidation","originalKeyword":"oxidation"}],"language":"zh","publisherId":"cuihuaxb201211006","title":"An Au-Cu Bimetal Catalyst Supported on Mesoporous TiO2 with Stable Catalytic Performance in CO Oxidation","volume":"","year":"2012"},{"abstractinfo":"通过MoO3与TiO2相互支撑的方法制备了一系列多孔钼钛氧化物,并在此基础上研究了该材料结构在随焙烧温度变化过程中的转变机制,通过XRD、BET、FESEM、TG/DTG等表征分析,当焙烧温度低于600℃时,MoO3呈固体状态,通过MoO3与TiO2相互支撑可以制备出比表面积高达182 m2/g的介孔钼钛氧化物,可负载更多分散良好的MoO3,其加氢脱硫性能显著优于常规浸渍法制备的催化材料;当焙烧温度高于600℃时,MoO3呈熔融状态,“自支撑效应”消失,钼钛氧化物孔结构发生坍塌.","authors":[{"authorName":"李力成","id":"eafbcabb-dc04-4c5a-9003-9b3560032a62","originalAuthorName":"李力成"},{"authorName":"何甜甜","id":"f2a25825-ad7d-4272-9dca-a5f064e8ac33","originalAuthorName":"何甜甜"},{"authorName":"赵学娟","id":"c268aeee-98f0-4e2d-8b90-dee7391c3107","originalAuthorName":"赵学娟"},{"authorName":"钱祺","id":"6123cfe6-69b7-44b9-8537-3dab5622421c","originalAuthorName":"钱祺"},{"authorName":"王磊","id":"9f09929e-83b5-4fdb-86dc-584fc9063f7f","originalAuthorName":"王磊"},{"authorName":"李小保","id":"9f678f0b-6edf-4246-babc-60a8ed02c2d9","originalAuthorName":"李小保"}],"doi":"10.15541/jim20160069","fpage":"1198","id":"fb321574-17b7-4fd0-97a7-83bc855212fa","issue":"11","journal":{"abbrevTitle":"WJCLXB","coverImgSrc":"journal/img/cover/WJCLXB.jpg","id":"62","issnPpub":"1000-324X","publisherId":"WJCLXB","title":"无机材料学报"},"keywords":[{"id":"d7a2c97f-84b8-490e-80b2-0eaaff44773c","keyword":"钼钛氧化物","originalKeyword":"钼钛氧化物"},{"id":"407694e9-284e-493b-9dd5-10bbd4c0d2a8","keyword":"自支撑","originalKeyword":"自支撑"},{"id":"5e6956e3-eb41-483c-8871-163c57dd5deb","keyword":"比表面积","originalKeyword":"比表面积"},{"id":"ffb7c93a-62d7-446a-843f-854023037cbd","keyword":"结构转变","originalKeyword":"结构转变"},{"id":"ca26b9b5-4341-40fa-9e80-c4f0da392948","keyword":"加氢脱硫","originalKeyword":"加氢脱硫"}],"language":"zh","publisherId":"wjclxb201611007","title":"多孔钼钛氧化物的自支撑制备及其结构转变","volume":"31","year":"2016"},{"abstractinfo":"对比盐酸、硫酸、硝酸和草酸等几种常规酸对废弃脱硝催化剂活性组分五氧化二钒(V2O5)的提取效果,并考察酸的种类、浓度以及提钒温度对提钒效果的影响.结果表明:盐酸的提钒效果最佳,可将V2O5含量降至0.191%(质量分数),几种酸的提钒效果由大到小的顺序依次为盐酸、草酸、硫酸、硝酸.其次,硫酸的浓度对其提钒量影响最大,浓硫酸的效果是稀硫酸的2.8倍;而处理温度则对草酸的提钒效果影响最为显著,室温下草酸较高温少提取58.4%的V2O5.Uv-vis结果显示:V2O5经盐酸、硫酸以及草酸提取后,在浸渍液中出现(VO)2+的低价钒离子,这有利于提升酸的提钒效果.此外,酸处理对样品的比表面积影响较为显著,经浓草酸处理比表面积可恢复至60.8m2/g,相比原有废弃催化剂的提升39.6%.","authors":[{"authorName":"李力成","id":"e8d120f1-6092-499d-9e49-09b3d4276786","originalAuthorName":"李力成"},{"authorName":"王磊","id":"8e00f5c9-b2e6-4f4a-82c8-4ca2de3632f2","originalAuthorName":"王磊"},{"authorName":"赵学娟","id":"2424abbf-1ec4-4e24-8875-8e44579d139d","originalAuthorName":"赵学娟"},{"authorName":"钱祺","id":"3fdc5209-af91-4bbe-b435-609c185fb568","originalAuthorName":"钱祺"},{"authorName":"宋珊珊","id":"766bd9bd-2243-451a-8e9d-2224c37d524a","originalAuthorName":"宋珊珊"},{"authorName":"李小保","id":"2c083ea1-cd40-4823-a1aa-36677ae850a2","originalAuthorName":"李小保"}],"doi":"","fpage":"2230","id":"72615660-22bd-4be1-b8aa-45f32c8d4836","issue":"10","journal":{"abbrevTitle":"ZGYSJSXB","coverImgSrc":"journal/img/cover/ZGYSJSXB.jpg","id":"88","issnPpub":"1004-0609","publisherId":"ZGYSJSXB","title":"中国有色金属学报"},"keywords":[{"id":"b8d85e68-e542-4526-bff8-a6fc47095453","keyword":"脱硝催化剂","originalKeyword":"脱硝催化剂"},{"id":"34cd21a5-43ff-4261-b63f-9a6181f6efd4","keyword":"酸","originalKeyword":"酸"},{"id":"f22d6d13-0b7b-4e6c-b85f-7372b43158e4","keyword":"提钒","originalKeyword":"提钒"},{"id":"928cae2e-b618-4c31-a20b-dc0d5fe720ce","keyword":"(VO)2+","originalKeyword":"(VO)2+"}],"language":"zh","publisherId":"zgysjsxb201610024","title":"几种酸在废弃脱硝催化剂中提钒效果的比较","volume":"26","year":"2016"},{"abstractinfo":"十八胺(ODA)高温成膜特性可为燃气机组停机保养过程的防护提供科学依据。采用高压釜模拟350-560℃水汽环境,对燃气机组管材受热面ODA成膜进行研究,探讨了各条件对成膜耐蚀性的影响。结果表明:ODA最佳成膜条件:80mg/L ODA,温度480℃,pH值9.5,恒温时间2h;560℃时形成的膜层也具有很好的保护性,表明不降温加入ODA进行停机保养也是可行的;所成膜为含ODA的氧化铁层,ODA中N与Fe发生化学吸附形成保护膜。","authors":[{"authorName":"谢建丽","id":"8f02f402-d23e-460c-82dc-5d39f86e8bde","originalAuthorName":"谢建丽"},{"authorName":"邓佳杰","id":"130c9eb4-8793-4321-8e7c-39b69ba425b3","originalAuthorName":"邓佳杰"},{"authorName":"胡家元","id":"64e5933c-0fff-4673-a411-c1e2689be055","originalAuthorName":"胡家元"}],"doi":"","fpage":"69","id":"fc9281e3-aadf-439f-87c8-8bf7dadee48b","issue":"3","journal":{"abbrevTitle":"CLBH","coverImgSrc":"journal/img/cover/CLBH.jpg","id":"7","issnPpub":"1001-1560","publisherId":"CLBH","title":"材料保护"},"keywords":[{"id":"6b61c3c6-56ff-4fd2-b471-dc2a949a0d9a","keyword":"十八胺(ODA)","originalKeyword":"十八胺(ODA)"},{"id":"2ee0cfce-96b8-4bb0-9c3c-4c22f30d4766","keyword":"成膜特性","originalKeyword":"成膜特性"},{"id":"a97b6b5d-b088-4207-a6b9-bac53976445a","keyword":"成膜形态","originalKeyword":"成膜形态"},{"id":"4da2fd2b-7446-4d19-84bb-dd41d1ab5bc2","keyword":"耐蚀性","originalKeyword":"耐蚀性"}],"language":"zh","publisherId":"clbh201203027","title":"十八胺高温成膜特性及成膜形态","volume":"45","year":"2012"},{"abstractinfo":"成膜助剂的水溶性、相对挥发速度影响其在涂膜干燥过程中的挥发.热失质量和激光粒度分析发现,成膜助剂挥发过程分两个阶段.在第一阶段,成膜助剂一方面挥发,另一方面因浓度提高而向聚合物粒子内部渗透,油溶性成膜助剂挥发速度比较快;在第二阶段,成膜助剂的挥发受到成膜助剂分子由聚合物内部向外扩散的控制,油溶性成膜助剂挥发速度比较慢.由于成膜助剂水溶性的这种差异,导致油溶性成膜助剂容易出现缩边现象.这对于成膜助剂的选用和减量增效,以及提高成膜性能具有重要意义.","authors":[{"authorName":"殷耀兵","id":"97de3834-e40b-4346-9eb4-31a20d081bf7","originalAuthorName":"殷耀兵"},{"authorName":"李国强","id":"f81b9d86-db83-4663-8175-cea411165361","originalAuthorName":"李国强"},{"authorName":"管文超","id":"d191642a-1df2-48e7-880a-ca4322b90cbb","originalAuthorName":"管文超"}],"doi":"10.3969/j.issn.0253-4312.2007.08.006","fpage":"20","id":"7a5562c6-5563-44f1-86dc-85fe1322846b","issue":"8","journal":{"abbrevTitle":"TLGY","coverImgSrc":"journal/img/cover/TLGY.jpg","id":"61","issnPpub":"0253-4312","publisherId":"TLGY","title":"涂料工业 "},"keywords":[{"id":"34ef2bdd-e83f-40e8-bc54-111ab1227d66","keyword":"成膜助剂","originalKeyword":"成膜助剂"},{"id":"ab234247-c474-4d89-b0ad-9dfff9e6c947","keyword":"水溶性","originalKeyword":"水溶性"},{"id":"ebeae4bd-c74d-4944-a626-84ce00c88887","keyword":"挥发","originalKeyword":"挥发"},{"id":"c3a54a8d-467d-4751-aa5f-653573276a78","keyword":"缩边","originalKeyword":"缩边"}],"language":"zh","publisherId":"tlgy200708006","title":"乳液涂料成膜过程中成膜助剂的挥发","volume":"37","year":"2007"},{"abstractinfo":"分析了目前对机械镀锌原理认识的合理性,提出了机械镀锌的成膜机理是在腐蚀微电池的作用下,镀液中的金属离子在阴极区电沉积,溶液中的金属粉末在阳极区发生溶解,电沉积的金属成膜助剂使金属粉末在基材上沉积.冲击作用在于搅拌溶液以减少浓差极化,使凝聚粉团变形利于成膜,破碎枝晶,方便堆砌.机械镀的成膜是化学电池产生的金属粉末的部分阳极自溶解和镀覆金属阴极电沉积的结果,从而将金属粉末和基体结合在一起.","authors":[{"authorName":"王兆华","id":"f877aeeb-c2d5-4e18-8f51-f1a27dd08571","originalAuthorName":"王兆华"},{"authorName":"杨瑞嵩","id":"bc2f5b05-f0a2-49bb-8206-54f72d3daa77","originalAuthorName":"杨瑞嵩"},{"authorName":"张鹏","id":"87563fd0-237a-4482-aa44-a4ac351a36bd","originalAuthorName":"张鹏"},{"authorName":"刘元洪","id":"628ea23c-7971-4a55-962a-aa7d61ceefe6","originalAuthorName":"刘元洪"}],"doi":"","fpage":"52","id":"4518b7fd-d5bc-4ef3-91ec-fc6bf05a0671","issue":"8","journal":{"abbrevTitle":"CLBH","coverImgSrc":"journal/img/cover/CLBH.jpg","id":"7","issnPpub":"1001-1560","publisherId":"CLBH","title":"材料保护"},"keywords":[{"id":"5196d737-4589-4ddf-a637-38da4b1b1ebf","keyword":"机械镀锌","originalKeyword":"机械镀锌"},{"id":"28e76920-a0fa-49d0-956d-c2c70e923962","keyword":"成膜机理","originalKeyword":"成膜机理"},{"id":"5da7428e-480b-46a6-846c-05b552914d25","keyword":"腐蚀电池","originalKeyword":"腐蚀电池"}],"language":"zh","publisherId":"clbh201308017","title":"机械镀锌成膜机理探讨","volume":"46","year":"2013"},{"abstractinfo":"成膜技术在电子技术的发展进程中起着重要的作用,尤其是电子元件与电镀技术的密切关系可称之为源远流长.近年来,随着对电子元件小型、高性能及多功能要求的日趋迫切,成膜技术的重要性显得更为突出.就半导体元件制作中的引线框架及凸台的形成、印刷线路板制作中的导体层的形成及多功能导体层的处理、线圈、电容器及电阻等无源元件中电阻薄膜及外部电极端子制作等各种电子元件制造有关的成膜技术作评述.","authors":[{"authorName":"李青","id":"2d1e860d-e1bb-4a54-915f-4d92e3eb832c","originalAuthorName":"李青"},{"authorName":"李刚","id":"71d3fc72-931c-4199-a604-9d885a455af3","originalAuthorName":"李刚"}],"doi":"10.3969/j.issn.1001-3849.2000.01.006","fpage":"21","id":"7e8442d9-79c4-4ee4-b662-b86a1b0dc3e5","issue":"1","journal":{"abbrevTitle":"DDYJS","coverImgSrc":"journal/img/cover/DDYJS.jpg","id":"20","issnPpub":"1001-3849","publisherId":"DDYJS","title":"电镀与精饰 "},"keywords":[{"id":"7716580b-6795-4219-abc4-2c9da0d1e687","keyword":"电子元件","originalKeyword":"电子元件"},{"id":"f80373a2-ca02-4337-ab9c-08db97e1d83a","keyword":"成膜技术","originalKeyword":"成膜技术"},{"id":"913247bb-3d6e-4223-8da6-815b7fc0ade6","keyword":"电镀","originalKeyword":"电镀"}],"language":"zh","publisherId":"ddjs200001006","title":"电子元件与成膜技术","volume":"22","year":"2000"}],"totalpage":583,"totalrecord":5822}