戴国梁
,
李振华
,
王文宁
,
刘晶
,
范康年
催化学报
doi:10.1016/S1872-2067(11)60523-8
采用周期密度泛函理论研究了V2O5 (001)表面乙烷深度氧化过程,结果表明,乙醛是主要的副产物,且脱附态的乙醛能很容易被氧化成乙酸,但多数乙醛在从表面脱附前已被氧化成COx.显然,在乙烷氧化脱氢反应的最终产物COx主要来源于乙醛.
关键词:
深度氧化
,
乙烷
,
氧化脱氢
,
周期密度泛函
程彦虎
,
张帆
,
张翼
,
缪长喜
,
华伟明
,
乐英红
,
高滋
催化学报
doi:10.1016/S1872-2067(15)60893-2
石油资源的日趋短缺使天然气和页岩气的开发利用受到重视,因而低碳烷烃脱氢制取低碳烯烃也随之引起了人们越来越多的关注.由于乙烷纯脱氢反应的平衡收率低,能耗高,而氧气氧化脱氢又易将乙烷深度氧化为CO2或CO,因此开发具有反应条件温和、装置投资和操作费用低等优势的CO2气氛下乙烷脱氢的技术路线日益得到重视. CrOx是该反应理想的催化剂之一, CO2的加入可使CrOx对乙烷脱氢的催化活性提升3倍,然而受困于CrOx过小的比表面积,通常将CrOx制备成负载型催化剂使用. CrOx的常见载体有Al2O3, ZrO2和SiO2等氧化物及MCM-41, SBA-15, SBA-1和MSU-x等介孔硅材料, ZSM-5作为载体负载CrOx用于低碳烷烃脱氢的研究则较少,所得结果也不甚理想.我们采用亚微米尺寸的ZSM-5作为载体制备了负载型CrOx催化剂,研究了其在CO2气氛下催化乙烷脱氢反应,发现该催化剂具有非常优异的脱氢活性,高硅铝比和Na型的ZSM-5作载体对反应更加有利,而且在反应进行50 h后,催化剂依然保持很好的活性和很高的乙烯收率,这是在一般负载型CrOx催化剂上所不能实现的.
X射线光电子能谱(XPS)表征发现, Na型ZSM-5载体制得的催化剂具有更高的Cr6+/Cr3+比.一般认为, Cr6+是Cr系催化剂进行低碳烷烃脱氢反应时的活性位(或活性位前驱体),因此可以初步判定, Na型载体具有很好催化效果的原因可能是由它制得的催化剂具有更多的反应活性位.程序升温还原(H2-TPR)表征结果证实了这一点, Na型载体明显具有更高的H2消耗量;也就是说, Na型载体制得的催化剂具有更多的可还原Cr物种,即脱氢活性位.进一步表征发现,反应活性还与Cr物种存在形式有关.文献报道,低聚态的Cr物种和孤立态的Cr物种比Cr2O3有更好的催化活性.通过漫反射紫外-可见光谱(UV-Vis)对Cr物种的存在形态进行表征后发现, Na型载体上Cr主要以四配位形式存在,而在H型载体上出现了对应于六配位的Cr物种;激光Raman表征结果表明, Na型载体上出现的都是低聚态Cr物种和孤立态Cr物种,而H型载体上出现了明显的对应于α-Cr2O3的峰,说明相较于H型载体, Na型载体更有利于Cr组分分散,这也是Na型ZSM-5载体催化剂具有更高活性的原因之一.
CO2引入后对乙烷脱氢反应具有明显的促进作用,特别是在CO2/C2H6=5时,催化剂上C2H6转化率是非CO2气氛下的3.2倍;同时, CO2的引入也提高了脱氢反应的稳定性.在非CO2气氛下,反应进行6 h后, C2H6转化率降低到初活性的60%左右,而在CO2/C2H6=5时,相同时间内催化剂活性下降仅有5%左右.实验分析了CO2对脱氢反应具有促进作用的原因.在脱氢反应温度650 oC下, CO2/H2=1时进行了逆水煤气反应测试,发现CO2的转化率达到22.5%,说明引入CO2后可以通过逆水煤气反应有效地消耗掉乙烷脱氢反应生成的H2,从而促进反应向脱氢方向进行; CO2的引入也可以促进Cr物种的CrOx/CrOx-1循环,从而提高催化剂效率,减缓催化剂失活; CO2还可与反应中生成的积碳类物质发生Boudouard反应,将反应活性位暴露出来,从而提高催化剂的稳定性. CO2气氛下反应6 h后催化剂的积碳量为3.0%,低于非CO2气氛下的3.4%,同时在脱氢反应中生成的CO量与消耗掉的CO2量的比值约为1.4,也有力地说明Boudouard反应的存在.
关键词:
脱氢反应
,
乙烷
,
ZSM-5分子筛
,
亚微米
,
二氧化碳
郁风驰
,
吴雪娇
,
张庆红
,
王野
催化学报
doi:10.1016/S1872-2067(14)60152-2
报道了一种HCl存在时温和条件下的乙烷氧化脱氢制乙烯催化转化新途径。研究发现,在多种金属氧化物催化剂中, CeO2呈现最佳乙烯生成的催化性能。与纳米粒子相比,具有棒状和立方体状形貌的CeO2纳米晶具有较高的乙烷转化率和乙烯选择性。以MnOx修饰CeO2可进一步提高催化性能。在8 wt% MnOx-CeO2催化剂上,723 K反应2 h时乙烷转化率和乙烯选择性分别为94%和69%。该催化剂性能稳定,反应100 h乙烯收率可保持在65%-70%。 HCl的存在对乙烯的选择性生成起着至关重要的作用,一部分乙烯来自于氯乙烷的脱HCl反应。
关键词:
乙烷
,
乙烯
,
氧化脱氢
,
氯化氢
,
二氧化铈
石磊
,
闫冰
,
邵丹
,
姜凡
,
王东琪
,
陆安慧
催化学报
doi:10.1016/S1872-2067(17)62786-4
乙烯是最为重要的化工原料之一,目前其工业来源主要来自于烃类的水蒸汽裂解过程.该过程本质上是一个高温均相裂解过程,温度(>800?℃)高,能耗大,碳排放严重.乙烷氧化脱氢制乙烯属于放热反应,反应温度低,速率快,无积碳等限制,是一条更富有竞争力的工艺路线.然而,常用的金属或金属氧化物催化剂容易导致乙烯深度氧化,从而降低了乙烯选择性.纳米碳材料在烃类氧化脱氢反应中展现出一定的催化活性,但容易被氧化,难以用于反应温度高的乙烷氧化脱氢反应.本文报道了羟基化的氮化硼(BNOH)可高效催化乙烷氧化脱氢制乙烯.氮化硼边沿羟基官能团脱氢生成了动态活性位,从而引发了乙烷的脱氢反应.BNOH对乙烷氧化脱氢制乙烯显示出高选择性.当乙烷转化率在11%,乙烯选择性可高达95%;当乙烷转化率增加到40%,乙烯选择性保持在90%.重要的是,当乙烷转化率超过60%时,BNOH仍然可保持80%的乙烯选择性以及50%的乙烯收率.这些性能指标与现有工业乙烷水蒸气裂解过程运行性能相当.进一步优化反应条件,BNOH催化剂能够实现高达9.1 gC2H4 gcat-1 h-1的时空收率.经过200 h的氧化脱氢反应测试,BNOH催化剂活性和选择性基本恒定,表明其具有非常好的稳定性.X射线粉末衍射结果显示,反应前后BNOH催化剂的物相没有发生变化.透射电子显微镜测试证实,反应后BNOH催化剂的形貌和微观结构也没有明显改变.X射线光电子能谱结果显示,反应200 h后BNOH催化剂表面的氧含量仅从反应前的6.9 atom%微增到8.3 atom%.1H固体核磁共振谱测试显示,反应200 h后,BNOH催化剂上羟基含量无明显改变.结合原位透射红外光谱和同位素示踪实验,初步确定了BNOH催化剂上引发乙烷氧化脱氢反应的活性中心.氮化硼边沿的氧官能团并不能引发乙烷的氧化脱氢反应,而羟基官能团才是氧化脱氢反应发生的活性位.在乙烷氧化脱氢条件下,分子氧脱除羟基官能团上的氢原子动态生成BNO·?和HO2·?活性位.密度泛函理论计算表明,乙烷首先在BNO·?或HO2·?位活化生成乙基自由基,这些中间物进一步与气相氧物种发生反应脱氢生成乙烯.动力学测试结果也验证了上述实验和理论结果.
关键词:
氮化硼
,
羟基化
,
乙烷
,
氧化脱氢
,
乙烯