Y. Q. Jia1)
,
J. G. Li1)
,
Y. M. Wang2)
,
L. X. Ding2)
,
X. M . Qin1) and X. D. Sun1)1) School of Materials and Metallurgy
,
Northeastern University
,
Shenyang 110006
,
China2) Department of Materials
,
School of Mechanical Engineering
,
Shenyang University
,
Shenyang 110044
,
China
金属学报(英文版)
Using yttriu m nitrate as the m other salt , synthesis of ultrafine yttria po w der through w et che mical route w as investigated . Choice of precipitant has dra m atic effects on co m position ,particle size distribution and particle m orphology of the precipitates . When a m m onia solutionw as used as the precipitant , the precursor precipitate w as m ainly Y2( O H) 5 14( N O3) 0 86· H2 O with co m paratively large particle size , broad size distribution and co m plex particleshapes . When sodiu m hydroxide solution w as used , roughly spherical α Y( O H)3·3 H2 Opre cipitate w ith sm all particle size and narro w size distribution w as obtained . The transfor m a tion sequence of dry α Y( O H)3 ·3 H2 O gel during calcination w as determ ined to be α Y( O H) 3·3 H2 O→ Y O O H→ Y2 O3 . After calcining at 600 ℃ for 1 hour , both Y2( O H) 5 14( N O3) 0 86· H2 O and α Y( O H) 3·3 H2 O transfor m to well crystallized Y2 O3 pow ders ,w ith particle sizes of 50 ~3000 n m and 20 n m , respectively .
关键词:
KEYW ORDS yttria
,
null
,
null
,
null