{"currentpage":1,"firstResult":0,"maxresult":10,"pagecode":5,"pageindex":{"endPagecode":5,"startPagecode":1},"records":[{"abstractinfo":"利用现场连续监测的方法获取或采用专业气象部门资料以及林业资源二类清查数据的植被资料,运用GlOBEIS模型,对北京地区2011年度植物挥发性有机物(BVOCs)排放总量进行了估算,同时,也对所研究树种异戊二烯、单萜烯排放量进行了估算.结果表明,BVOCs的排放量分布情况与北京地区植被的分布情况一定的相关性,并且VOCs的排放情况具明显的季节依赖性.研究树种类型分为常绿乔木、落叶乔木、灌木、草本花卉,BVOCs排放量最大的依次为油松、苹果树、大叶黄杨和竹.其中,异戊二烯排放量最高为法桐,排放年通量可达313.92 μg· (g·h)-1;单萜烯排放量最高为苹果树,排放年通量可达726.68 μg·(g·h)-1.估算过程中的误差主要来自于植物标准排放因子的获取、叶生物量的计算,气象参数的变化也会给排放清单带来较大的不确定性.","authors":[{"authorName":"李俊仪","id":"249e39eb-b7f7-43cc-945e-f9b35045b214","originalAuthorName":"李俊仪"},{"authorName":"田梁宇","id":"9015872a-a181-43ab-b2f9-1c69df3fe9be","originalAuthorName":"田梁宇"},{"authorName":"伦小秀","id":"9b00962e-7f88-47da-a809-fb41575ea89d","originalAuthorName":"伦小秀"},{"authorName":"余新晓","id":"27dec501-3664-410d-b903-89f2669db7e9","originalAuthorName":"余新晓"},{"authorName":"黄迪","id":"821d6a7b-6b91-4af3-9184-1e3ed3224ad3","originalAuthorName":"黄迪"}],"doi":"10.7524/j.issn.0254-6108.2017.04.2016072402","fpage":"776","id":"cdd848d0-082e-4942-b038-43c7c12d25c6","issue":"4","journal":{"abbrevTitle":"HJHX","coverImgSrc":"journal/img/cover/HJHX.jpg","id":"43","issnPpub":"0254-6108","publisherId":"HJHX","title":"环境化学 "},"keywords":[{"id":"37f32be3-c68c-474f-a59a-289a3b9e9c60","keyword":"植物挥发性有机物(BVOCs)","originalKeyword":"植物源挥发性有机物(BVOCs)"},{"id":"0cd670d1-4d79-468a-a8ba-eb99648e34a5","keyword":"北京地区","originalKeyword":"北京地区"},{"id":"fd14491d-400a-44ba-bb50-f0bd334ad2c2","keyword":"排放清单","originalKeyword":"排放清单"},{"id":"ae69de09-40c0-45c3-8f7f-79b5e7fae6ce","keyword":"单萜烯","originalKeyword":"单萜烯"},{"id":"0e0f2c18-0d92-4ee0-a32c-eb208c43ac77","keyword":"异戊二烯","originalKeyword":"异戊二烯"}],"language":"zh","publisherId":"hjhx201704011","title":"北京地区植物挥发性有机物(BVOCs)排放清单","volume":"36","year":"2017"},{"abstractinfo":"设计组装了炭阱吸附装置,并与气相色谱-质谱(GC-MS)联用测定了银杏叶和利马豆的挥发性有机物.采用炭阱吸附装置与固相微萃取(SPME)收集银杏叶的挥发性有机物,用GC-MS进行分析,结果表明采用炭阱吸附装置对银杏叶挥发性有机物的富集效果优于SPME方法.实验还采用内标法对利马豆的挥发性有机物进行了初步的定量,两次实验结果的重复性较好.由于炭阱吸附装置能够很好地收集植物挥发性有机物,且可以进行多个样品的平行实验及植物挥发性有机物的定量研究,因此炭阱吸附装置与GC-MS联用更适合用于实验室中植物挥发性有机物的研究.","authors":[{"authorName":"郭淑政","id":"e5e8d455-7e81-4d65-8dce-dc4d5e552556","originalAuthorName":"郭淑政"},{"authorName":"刘苏静","id":"5350873c-06e1-41d4-a3e0-74f696a12add","originalAuthorName":"刘苏静"},{"authorName":"马宣宣","id":"89b06eeb-b6d7-43ad-b500-073317c2f267","originalAuthorName":"马宣宣"},{"authorName":"杨翠云","id":"c0c8ecf5-6179-4a21-beb8-c38b8fd1c48d","originalAuthorName":"杨翠云"},{"authorName":"周世伟","id":"87cb6789-0556-40eb-bc4e-1b77692cccf2","originalAuthorName":"周世伟"},{"authorName":"夏传海","id":"ac2f22d0-0669-49ad-b331-c21d0b462f42","originalAuthorName":"夏传海"}],"doi":"10.3724/SP.J.1123.2010.00716","fpage":"716","id":"66bd1cfe-eedd-4783-9977-cd30fbc6c00d","issue":"7","journal":{"abbrevTitle":"SP","coverImgSrc":"journal/img/cover/SP.jpg","id":"58","issnPpub":"1000-8713","publisherId":"SP","title":"色谱 "},"keywords":[{"id":"2ecb5c16-924b-40c0-b564-d71147abd60a","keyword":"炭阱吸附装置","originalKeyword":"炭阱吸附装置"},{"id":"ac2c85fb-347a-4a06-9726-d04cca645493","keyword":"气相色谱-质谱","originalKeyword":"气相色谱-质谱"},{"id":"8e078574-b39d-4be9-84c0-aedce152660f","keyword":"挥发性有机物","originalKeyword":"挥发性有机物"},{"id":"18832260-53b0-47ff-80bd-569d3c48d6b0","keyword":"银杏叶","originalKeyword":"银杏叶"},{"id":"d1f25c1e-1381-42e8-ad5e-bc7626268bfb","keyword":"利马豆","originalKeyword":"利马豆"}],"language":"zh","publisherId":"sp201007017","title":"自制炭阱吸附装置与气相色谱-质谱联用测定植物挥发性有机物","volume":"28","year":"2010"},{"abstractinfo":"本文主要对水中挥发性有机物分析的研究进展做了较全面的介绍,简述了近年来样品的采集与保存技术、前处理方法及分析测试技术。对采集后的样品进行前处理的方法主要吹扫捕集法、顶空固相微萃取法、液相微萃取法、动态针捕集阱等;分析测试技术主要气相色谱法、气相色谱质谱法、质子转移反应质谱法等,对比了每种方法的优缺点,并展望未来分析检测技术的发展方向,为准确快速测定水中挥发性有机物提供参考。","authors":[{"authorName":"姜洋","id":"86b41a7c-db65-4f31-a3ba-5b4d9ec32a03","originalAuthorName":"姜洋"},{"authorName":"房丽萍","id":"53af3b5f-8e1f-4895-b4c5-c7dfb0dae68f","originalAuthorName":"房丽萍"},{"authorName":"杨刚","id":"9e6972e8-8551-40c8-b8fb-2b0060131ca9","originalAuthorName":"杨刚"},{"authorName":"王伟","id":"b44a4504-5979-4ee5-9d52-b77cafbfdc6e","originalAuthorName":"王伟"},{"authorName":"陈咏梅","id":"345ab77f-82ca-43fd-89b7-2380f55fa9d3","originalAuthorName":"陈咏梅"},{"authorName":"田文","id":"a3d954e3-5c0c-4873-b1aa-303c64b38d8a","originalAuthorName":"田文"}],"doi":"10.7524/j.issn.0254-6108.2015.09.2015011601","fpage":"1611","id":"a85ff08a-c718-4b2f-9746-6152bfb733fe","issue":"9","journal":{"abbrevTitle":"HJHX","coverImgSrc":"journal/img/cover/HJHX.jpg","id":"43","issnPpub":"0254-6108","publisherId":"HJHX","title":"环境化学 "},"keywords":[{"id":"8f88eefc-c69a-4456-9946-8abc1c54faa2","keyword":"水体","originalKeyword":"水体"},{"id":"28287a3d-7470-4a3b-ac2a-d05962343309","keyword":"挥发性有机物","originalKeyword":"挥发性有机物"},{"id":"64a72983-0bb4-4f87-b200-82a1b646eb6f","keyword":"前处理方法","originalKeyword":"前处理方法"},{"id":"f697cb1e-3906-4794-80e4-930f414459e0","keyword":"分析测试技术","originalKeyword":"分析测试技术"}],"language":"zh","publisherId":"hjhx201509005","title":"水体中挥发性有机物分析方法研究进展","volume":"","year":"2015"},{"abstractinfo":"建立了空气中挥发性有机物去除的实验与测量系统,以甲醛、甲苯等为研究对象,分别进行了大量系统实验研究.结果表明,该实验装置对不同工况下甲醛的去除效果最好,一次去除率高达99%,氨次之,甲苯最低,采用空气循环处理或改进VOCs去除装置可大幅提高去除率.","authors":[{"authorName":"陶毓伽","id":"b4c50997-c04a-4086-ac56-8c58f01773ec","originalAuthorName":"陶毓伽"},{"authorName":"淮秀兰","id":"ab99de52-5d7e-4c90-8709-38ef37d6bdd7","originalAuthorName":"淮秀兰"},{"authorName":"王唯威","id":"5b42f49f-7df8-4a36-ac08-474f364481bd","originalAuthorName":"王唯威"}],"doi":"","fpage":"116","id":"c7f76a3a-f3de-4b65-ba2e-2b94d7242faa","issue":"z2","journal":{"abbrevTitle":"GCRWLXB","coverImgSrc":"journal/img/cover/GCRWLXB.jpg","id":"32","issnPpub":"0253-231X","publisherId":"GCRWLXB","title":"工程热物理学报 "},"keywords":[{"id":"67f4665e-ad9e-4fd0-a8f5-f427e41b5c90","keyword":"高效节能","originalKeyword":"高效节能"},{"id":"3e75599b-c134-4a5f-8428-ce48af194dfc","keyword":"去除","originalKeyword":"去除"},{"id":"4a14a234-f273-4d22-9492-2a71d79e9a05","keyword":"挥发性有机物","originalKeyword":"挥发性有机物"}],"language":"zh","publisherId":"gcrwlxb2006z2030","title":"高效节能挥发性有机物去除的实验研究","volume":"27","year":"2006"},{"abstractinfo":"利用索氏提取-气相色谱-质谱联用技术,对某废弃化工厂原厂区土壤中可能存在的挥发性有机污染进行定性和定量分析;利用索氏提取进行土样中有机物的提取,用十四烯配制标准曲线,以质谱全扫描方式的数据进行定性,选择离子监测的数据进行外标法定量,提高检测的灵敏度和准确度.依照美国环保局对环境分析的质量保证和质量控制指标对分析结果进行检测,发现方法的检出限为0.024mg·kg-1,回收率为95.84%,结果符合要求.","authors":[{"authorName":"汪鑫","id":"ad42dfff-7c07-4ae1-9773-36281d7a94e0","originalAuthorName":"汪鑫"},{"authorName":"李洋","id":"b37e7c72-cf02-472d-8aed-e9b788580d82","originalAuthorName":"李洋"},{"authorName":"栾和林","id":"87b49026-2bb5-4b8f-b979-1dfa3dd17f40","originalAuthorName":"栾和林"},{"authorName":"姚文","id":"35124b57-c0e0-48f6-a5a9-df252000f27f","originalAuthorName":"姚文"},{"authorName":"李继梅","id":"aa3a895d-9a35-48fe-87c4-db7a208d772a","originalAuthorName":"李继梅"}],"doi":"10.3969/j.issn.0258-7076.2006.z1.006","fpage":"23","id":"2db7b7b4-797f-465c-9bc1-15c89a2de44d","issue":"z1","journal":{"abbrevTitle":"XYJS","coverImgSrc":"journal/img/cover/XYJS.jpg","id":"67","issnPpub":"0258-7076","publisherId":"XYJS","title":"稀有金属"},"keywords":[{"id":"f8962f96-a54e-468a-b48d-4f833631a7cf","keyword":"土壤","originalKeyword":"土壤"},{"id":"c3ddb454-bb86-495c-a847-8b63ef967e2b","keyword":"挥发性有机物","originalKeyword":"挥发性有机物"},{"id":"33d030c3-0461-43aa-a9e9-d979c29296da","keyword":"环境分析","originalKeyword":"环境分析"},{"id":"45091853-1cae-4671-8138-f6265f6effca","keyword":"气相色谱-质谱法","originalKeyword":"气相色谱-质谱法"}],"language":"zh","publisherId":"xyjs2006z1006","title":"土壤中挥发性有机物的GC-MS测定","volume":"30","year":"2006"},{"abstractinfo":"将有机化合物分子中的非氢原子分为4类,将不同非氢原子自身及非氢原子之间的关系作为结构描述符,对部分饮用水中挥发性有机物分子结构进行了参数化表达.采用逐步回归(SMR)与偏最小二乘回归(PLS)相结合的方法构建了化合结构与色谱保留时间(tR)之间的关系模型,模型的建模相关系数(R2)为0.955,“留一法”交互检验的相关系数(Q2)为0.894,标准偏差(SD)为0.803.结果表明结构描述符能较好地表征化合分子结构特征,所建模型稳定性好、预测能力强,对于挥发性有机污染QSRR研究具一定的参考价值.","authors":[{"authorName":"廖立敏","id":"44af4b32-b5fe-4ea0-9679-d2fc457b2fd9","originalAuthorName":"廖立敏"},{"authorName":"李建凤","id":"5c9d0cd3-3c4e-4c80-ae80-631ca06dc532","originalAuthorName":"李建凤"},{"authorName":"雷光东","id":"696f9d22-bb71-4d0c-b3da-f24f01e30165","originalAuthorName":"雷光东"}],"doi":"10.7524/j.issn.0254-6108.2017.04.2016081002","fpage":"710","id":"ed27d4c1-92a3-4cc4-ac38-57dce003d902","issue":"4","journal":{"abbrevTitle":"HJHX","coverImgSrc":"journal/img/cover/HJHX.jpg","id":"43","issnPpub":"0254-6108","publisherId":"HJHX","title":"环境化学 "},"keywords":[{"id":"d09e360f-e004-41d5-8e12-47a1d3f6f1e4","keyword":"挥发性有机物","originalKeyword":"挥发性有机物"},{"id":"80f57684-edfe-4ce0-9584-4b7f84515188","keyword":"色谱保留时间","originalKeyword":"色谱保留时间"},{"id":"e19d8b51-1993-4de1-b4e9-fb698de90233","keyword":"结构描述符","originalKeyword":"结构描述符"},{"id":"8b4a0698-e7c5-49c3-a419-fbdfafca433d","keyword":"结构与性质的关系","originalKeyword":"结构与性质的关系"}],"language":"zh","publisherId":"hjhx201704003","title":"饮用水中挥发性有机物结构与色谱保留时间的关系","volume":"36","year":"2017"},{"abstractinfo":"建立了检测玩具中10种挥发性有机物(VOC)残留量的顶空气相色谱-质谱(HS-GC-MS)方法.样品经140 ℃、45 min静态顶空后,通过DB-624色谱柱分离和质谱检测,外标法定量.该方法对于不同VOC的定量限(LOQ)均在0.66 mg/kg 以下,线性范围为0.001~2.0 μg,平均回收率在79% ~106%之间,相对标准偏差(RSD)在0.4% ~5.6%之间.该方法具准确灵敏、简单快速等特点,将其应用于实际玩具样品的检测取得了良好效果.","authors":[{"authorName":"吕庆","id":"7c80cc2e-b0c0-4217-ba90-604e8b7fc544","originalAuthorName":"吕庆"},{"authorName":"张庆","id":"2fb9b121-0c4f-45cb-a00b-e48f8dd9f69a","originalAuthorName":"张庆"},{"authorName":"康苏媛","id":"9f158c03-8a7c-47c6-a358-99a3574ffa31","originalAuthorName":"康苏媛"},{"authorName":"白桦","id":"ec44916d-d928-475e-ab10-2eba089df32a","originalAuthorName":"白桦"},{"authorName":"王超","id":"40935c5b-ca0d-413c-98ba-1198f0032001","originalAuthorName":"王超"}],"doi":"","fpage":"800","id":"c9424a3e-0118-4c96-a681-76e0846c62e3","issue":"8","journal":{"abbrevTitle":"SP","coverImgSrc":"journal/img/cover/SP.jpg","id":"58","issnPpub":"1000-8713","publisherId":"SP","title":"色谱 "},"keywords":[{"id":"ecd56e5e-a49c-443c-9831-d4d6408ccc2e","keyword":"顶空气相色谱-质谱法","originalKeyword":"顶空气相色谱-质谱法"},{"id":"84947425-7667-4ad1-a611-0774cd405046","keyword":"挥发性有机物","originalKeyword":"挥发性有机物"},{"id":"1b47c0a0-d7ed-40b2-984d-c12c409d45ea","keyword":"玩具","originalKeyword":"玩具"}],"language":"zh","publisherId":"sp201008015","title":"顶空气相色谱-质谱法测定玩具中的10种挥发性有机物","volume":"28","year":"2010"},{"abstractinfo":"制备了TiO2薄膜催化剂,并用三氯乙烯对其进行了预处理; 采用FT-IR,GC/MS及XPS等技术研究了三氯乙烯预处理的TiO2薄膜上挥发性有机物的光催化反应. 结果表明,三氯乙烯预处理能加快某些挥发性有机物的光催化反应. 这是由于氯作为三氯乙烯气相光催化分解反应的中间产物吸附在催化剂表面,成为反应的活性物种引发挥发性有机物发生游离基反应,从而提高其气相光催化反应速率.","authors":[{"authorName":"赵莲花","id":"4ca4c626-0166-4152-91d2-01d7b70f1c11","originalAuthorName":"赵莲花"},{"authorName":"伊藤公纪","id":"26b3b927-7c63-475e-9c33-cb0bdec9c140","originalAuthorName":"伊藤公纪"},{"authorName":"村林真行","id":"d2cc448a-310b-4dae-92da-8c3984c2f783","originalAuthorName":"村林真行"},{"authorName":"近藤正志","id":"a880be3c-6584-48a7-b413-69f4cd5f8282","originalAuthorName":"近藤正志"},{"authorName":"文学洙","id":"fc6d8a39-08f4-4606-b3b9-f8be36926b07","originalAuthorName":"文学洙"}],"doi":"","fpage":"669","id":"8fea4437-f414-43b8-b53d-49193b94e466","issue":"8","journal":{"abbrevTitle":"CHXB","coverImgSrc":"journal/img/cover/CHXB.jpg","id":"18","issnPpub":"0253-9837","publisherId":"CHXB","title":"催化学报 "},"keywords":[{"id":"58f4db1e-edac-41f8-9a32-00ae533b5fee","keyword":"三氯乙烯","originalKeyword":"三氯乙烯"},{"id":"d93e0c9c-ca1f-4d6c-895c-30a0d42438d7","keyword":"预处理","originalKeyword":"预处理"},{"id":"e54f2e38-9f07-466e-b9c8-2b458923eb84","keyword":"二氧化钛薄膜","originalKeyword":"二氧化钛薄膜"},{"id":"c15cf51f-e19d-4231-9e18-a9aa0bc3985c","keyword":"挥发性有机物","originalKeyword":"挥发性有机物"},{"id":"0e1db81b-6511-4055-9a00-183ba120fbd7","keyword":"光催化氧化","originalKeyword":"光催化氧化"}],"language":"zh","publisherId":"cuihuaxb200408016","title":"三氯乙烯预处理的TiO2薄膜上挥发性有机物的光催化反应","volume":"25","year":"2004"},{"abstractinfo":"对污染场地修复过程挥发性有机物( VOCs)散逸及浓度分布进行了检测分析,通过光离子气体检测仪( PID)现场快速监测与采样管采样气相色谱质谱分析技术相结合的方式,进行了修复过程中VOCs散逸浓度检测,同时利用吹扫捕集法+色谱/质谱检测分析方法进行了 VOCs污染场地内土壤中浓度检测。研究了VOCs在挖掘扰动过程中的散逸行为,并对气体中的VOCs浓度平面分布进行分析。结果表明,污染土壤中典型VOCs的散逸率整体上较高,对于该污染场地土壤特质,污染土壤扰动过程中,1,2?二氯乙烷散逸程度最高,苯散逸程度最低。 VOCs浓度并不因距离增加而呈现明显负相关关系,污染在扩散过程中会出现波峰波谷的现象。","authors":[{"authorName":"何绪文","id":"2a841d73-913c-441a-a395-5032c197ab0f","originalAuthorName":"何绪文"},{"authorName":"房增强","id":"918fc20a-f3c1-496e-9d78-1b9ae3c727c7","originalAuthorName":"房增强"},{"authorName":"程言君","id":"bf1883f1-9a58-496a-9717-30c9f6aadbc6","originalAuthorName":"程言君"},{"authorName":"于妍","id":"6fa46f82-64bc-4beb-98d9-94e80140195c","originalAuthorName":"于妍"},{"authorName":"罗梦","id":"caa2776e-5e0b-4131-9519-1af53f343fc4","originalAuthorName":"罗梦"},{"authorName":"贾建丽","id":"bc67ae79-13c4-4956-98d8-e6825e698b61","originalAuthorName":"贾建丽"}],"doi":"10.7524/j.issn.0254-6108.2015.02.2014091101","fpage":"284","id":"20cd9fe4-2945-4307-9218-f709e460a352","issue":"2","journal":{"abbrevTitle":"HJHX","coverImgSrc":"journal/img/cover/HJHX.jpg","id":"43","issnPpub":"0254-6108","publisherId":"HJHX","title":"环境化学 "},"keywords":[{"id":"c1429c93-f618-45fb-94b1-d87a92fd5ba4","keyword":"VOCs","originalKeyword":"VOCs"},{"id":"af521d8e-84df-45f1-af78-0ecf9990e580","keyword":"场地修复","originalKeyword":"场地修复"},{"id":"1aa64524-eeb7-4c6c-a261-52b10cfd1b60","keyword":"污染散逸","originalKeyword":"污染物散逸"},{"id":"cc8dc362-be21-4ba2-b065-7c7708b2345e","keyword":"浓度分布","originalKeyword":"浓度分布"},{"id":"41e0f96b-51e4-44e7-8c4f-ea7c1fa71013","keyword":"安全防护","originalKeyword":"安全防护"}],"language":"zh","publisherId":"hjhx2015020013","title":"污染场地修复过程挥发性有机物散逸规律及浓度分布分析?","volume":"","year":"2015"},{"abstractinfo":"将固相微萃取(SPME)技术与冷阱富集系统相结合,对水体中痕量挥发性有机物进行了单体碳同位素分析,方法检测限较常规SPME提高了一个数量级.在优化的条件下,对20 μg/L的三氯乙烯/四氯乙烯和10 μg/L的苯/甲苯水溶液进行了单体碳同位素分析,相比于纯溶剂(液相)碳同位素值,顶空(气相)同位素分析误差不超过0.5‰,而样本标准偏差为0.3‰.对某受四氯乙烯污染的北京地下水进行了同位素测定,近污染源点(B408)与远污染源点(B230)四氯乙烯的碳同位素值(δ13C)分别为 -37.8‰和-34.45‰,δ13C变重表明四氯乙烯在地下水中可能发生生物降解或化学反应过程.通过比较不同厂家的苯、甲苯、三氯乙烯和四氯乙烯的δ13C发现,同一试剂不同厂家的δ13C存在明显差异.该法简单、灵敏度高,适用于水体中痕量挥发性有机污染的同位素组成测定.","authors":[{"authorName":"刘国卿","id":"453c8252-3544-440f-811d-bff340978f04","originalAuthorName":"刘国卿"},{"authorName":"张干","id":"9d0c9c8c-f4fe-46f5-98df-04b9a07a4659","originalAuthorName":"张干"},{"authorName":"黄世卿","id":"9b7e08b2-20af-48ea-806f-1ce7ceaa8720","originalAuthorName":"黄世卿"},{"authorName":"彭先芝","id":"1cfb69f1-ece5-4a12-8ab2-0cb7faa67a9b","originalAuthorName":"彭先芝"},{"authorName":"陈鸿汉","id":"6b6df477-a682-4184-99be-38f076c3c022","originalAuthorName":"陈鸿汉"}],"doi":"10.3321/j.issn:1000-8713.2004.04.037","fpage":"439","id":"91bc35c6-a9c7-4a2d-95c9-730fb666360c","issue":"4","journal":{"abbrevTitle":"SP","coverImgSrc":"journal/img/cover/SP.jpg","id":"58","issnPpub":"1000-8713","publisherId":"SP","title":"色谱 "},"keywords":[{"id":"0feb680d-bf78-4e40-931f-fa9f10d981da","keyword":"单体同位素分析","originalKeyword":"单体同位素分析"},{"id":"5c6ad6df-bc3a-4291-90e1-1837dcdf395b","keyword":"固相微萃取","originalKeyword":"固相微萃取"},{"id":"89ecf045-12b7-488f-babd-2d7df270dd90","keyword":"冷阱","originalKeyword":"冷阱"},{"id":"3e7fbc2c-b349-4213-b8db-24e65bf40b51","keyword":"挥发性有机物","originalKeyword":"挥发性有机物"},{"id":"3a92a6cb-4060-4167-aacd-60138b0da549","keyword":"地下水","originalKeyword":"地下水"}],"language":"zh","publisherId":"sp200404037","title":"水体中痕量挥发性有机物单体碳同位素组成分析","volume":"22","year":"2004"}],"totalpage":13242,"totalrecord":132419}