杨洁
,
丛爽
量子电子学报
doi:10.3969/j.issn.1007-5461.2011.06.004
基于具有non-Markovian特性的关于量子系统约化密度矩阵的精确系统动力学方程,分别根据方程所具有的非封闭、不等时、积分微分方程的特性,通过Born逼近和Markov逼近得到关于量子系统约化密度矩阵的封闭、等时和微分的Markovian主方程;逐一分析了Markovian主方程的Lindblad形式、具有方便检验正定性的GKS表达形式、针对单量子位系统的Bloch球表达形式和无需明确的环境信息也能对开放系统进行描述的Kraus表达形式;分析并比较了能去除系统动力学方程non-Markovian特性的4种Markov逼近方法以及其他四种特定情形下常见的Markovian主方程;对于不适用于Markov逼近的情形,分析了能满足开放量子系统动力学对于系统状态要求的post-Markovian主方程;当热浴与量子系统发生能量交换,且热浴与量子系统组成的封闭系统能量守恒时,给出了热浴状态不恒定时开放量子系统的动力学方程,并通过Markov逼近得到Markovian主方程.
关键词:
量子光学
,
开放量子系统
,
Markov逼近
,
Markovian主方程
,
non-Markovian主方程