欢迎登录材料期刊网

材料期刊网

高级检索

  • 论文(4)
  • 图书()
  • 专利()
  • 新闻()

MIL-101负载Ni@Pd核壳纳米粒子催化芳香硝基类化合物加氢

简思平 , 李映伟

催化学报 doi:10.1016/S1872-2067(15)60940-8

金属有机骨架(MOFs)材料是一种新型的沸石类多孔材料,是由金属离子和有机配体通过配位键键合而成的拓扑结构.相比其他多孔材料,MOFs拥有更高的比表面积、孔隙率以及结构可调控性.在催化方面,MOFs复合材料在多相催化领域已经引起了广泛的研究兴趣.贵金属纳米颗粒是一种在化学、化工、生物和医学等许多领域有着广泛应用的高性能材料.但是,催化反应往往都是发生在纳米颗粒的表面,而位于颗粒内部的金属没能得到利用;从原子经济性的角度来看,以廉价金属作核、贵金属作壳的双金属纳米粒子能有效解决这个问题,而且还能利用双金属之间的协调作用.目前文献中也已经报道了多种非贵金属和贵金属组成的核壳双金属纳米粒子,都展现出了比单纯贵金属更好的催化活性.芳香胺类化合物是一种在工业上非常重要的有机中间体,广泛应用于农药、药物、染料和色素等等.目前,商业化生产的芳香胺化合物都是通过计量的还原剂,如连二硫酸钠、硼氢化钠、水合肼和氨水中的铁、锡、锌等非催化还原相应的芳硝基化合物得到,这样往往会带来严重的环境污染问题.而通过多相催化加氢还原方法来制备芳香胺化合物,不仅能高效催化芳硝基化合物加氢,而且催化剂可以回收利用,大大降低反应对环境的污染.本文综合贵金属原子经济观点和芳硝基类化合物加氢反应催化剂设计,在油胺和三正辛基膦中通过热还原二价的镍和钯,制备出以Ni为核Pd为壳的双金属纳米粒子.通过透射电镜观察,镍钯核壳纳米粒子的粒径约为8-9 nm.选用具有高比表面积和高稳定性的金属有机骨架材料MIL-101作为载体,通过浸渍法首次将镍钯核壳纳米粒子负载在MIL-101上制备出不同Ni:Pd比的Ni@Pd/MIL-101复合材料.利用X射线粉末衍射(XRD)、N2吸附-脱附、红外光谱、透射电子显微镜和X射线能谱对复合材料结构进行了表征.从XRD谱图能看出负载纳米粒子后的MIL-101材料结构依然保持完整,表明催化剂制备过程不会破坏载体结构.红外光谱测试结果表明,负载了镍钯纳米粒子的Ni@Pd/MIL-101复合材料中含有两种C-H键伸缩振动2852和2926 cm-1处两个特征峰,分别对应于-CH2-和-CH3中C-H键的特征吸收峰,可能是残留的油胺,也可能是三正辛基膦在与镍和钯形成配合物时的残留.X射线能谱测试发现,N元素在负载后已不存在,而P元素依旧存在,结合红外光谱可以确认,纳米粒子在负载前后三正辛基膦依然与纳米粒子稳定络合,进而可被MIL-101上未饱和的Cr固定.通过透射电镜可以观察到镍钯核壳纳米粒子高度分散在载体上.将Ni@Pd/MIL-101材料应用于硝基苯催化加氢反应.在30℃,0.1 MPa H2条件下,0.26% Ni@0.46%Pd/MIL-101催化剂具有最高的加氢活性,其转换频率(TOF)值最高可达375 h-1,是单金属负载钯催化剂的近2倍,展示出非贵金属替代部分贵金属的可行性.在循环使用方面,重复使用5次后的Ni@Pd/MIL-101催化剂依然保持较高的催化活性和选择性.同时考察了底物的兼容性,该催化体系对多种不同基团(包括不饱和基团)取代的硝基苯化合物的催化加氢,大都表现出很高的催化活性和选择性,TOF值最高可达495 h-1.

关键词: , , 核壳纳米粒子 , 金属有机骨架 , 芳香硝基类化合物 , 加氢 , 多相催化

核壳结构Fe3O4@UiO-66-NH2磁性纳米复合材料的合成及其催化Knoevenagel缩合反应性能

张艳梅 , 戴田霖 , 张帆 , 张静 , 储刚 , 权春善

催化学报 doi:10.1016/S1872-2067(16)62562-7

金属有机骨架(MOF)材料是由过渡金属离子与有机配体通过配位键连接构成的高度有序的超分子化合物.这类材料比表面积大,孔隙率高,热稳定性好,而且具有规整可调控的孔结构、易于功能化的骨架金属离子和有机配体,在多相催化领域具有潜在应用前景.将纳米尺寸的MOF材料等多孔材料作为催化剂,可以提高反应传质效率,从而提高催化反应活性,但纳米MOF催化剂的分离和回收困难.将磁性纳米粒子和MOF材料组装成核壳结构的磁性MOF材料,不仅可简化催化剂的分离回收,而且通过控制壳层材料的厚度可以实现催化剂的高活性和高选择性.我们曾将磁核Fe3O4纳米粒子交替放入含有一种MOF材料前体的DMF溶液中,采用层层组装法制备了磁性Fe3O4@UiO-66-NH2纳米复合材料.经过十步组装后的材料的透射电镜(TEM)结果证实为核壳结构.但未出现明显的UiO-66-NH2的X射线衍射(XRD)特征峰,说明壳层材料UiO-66-NH2的结晶度较低;同时由于其孔结构的破坏或堵塞,在反应中出现明显失活.本文进一步改进自组装方法制备了核壳结构的磁性Fe3O4@UiO-66-NH2纳米复合材料,用XRD、傅里叶变换红外光谱(FT-IR)、TEM、扫描电镜(SEM)和氮气吸附等方法对材料的组成和结构进行了表征,并考察了其在Knoevenagel缩合反应中的催化性能.结果表明,所制材料是以Fe3O4为核,以UiO-66-NH2为壳的核-壳结构材料.经三次组装后出现了一系列UiO-66-NH2的XRD特征峰,说明采用新方法制备的复合材料中壳层材料UiO-66-NH2结晶度高,晶体结构规整.N2吸附-脱附结果表明,材料具有较高的比表面积和孔容.该复合材料在Knoevenagel缩合反应中表现出与纳米UiO-66-NH2相当或更好的催化活性和选择性,而且因壳层材料的孔道限阈效应而对底物表现出尺寸选择性.由于材料结晶度和晶体结构规整度的提高,催化剂稳定性更好,通过简单磁性分离即可分离和回收催化剂,循环使用4次而未出现明显失活.相对于本课题组之前报道的Fe3O4@CuBTC-NH2,Fe3O4@IRMOF-3和Fe3O4@UiO-66-NH2材料,本文所制的Fe3O4@UiO-66-NH2是一类结构更加稳定的高效固体碱催化剂.

关键词: 金属有机骨架材料 , UiO-66-NH2 , 四氧化三铁 , 多相催化剂 , Knoevenagel缩合反应 , 磁性分离

金属有机骨架衍生 Ni基材料催化烷烃选择氧化

周颖 , 隆继兰 , 李映伟

催化学报 doi:10.1016/S1872-2067(15)61067-1

N掺杂碳基纳米材料由于具有高稳定性、良好的导电性、较大的孔体积和比表面积等特点而受到了国内外广泛的关注,在气体吸附、催化、电化学以及燃料电池等许多领域表现出潜在应用价值. N掺杂碳材料的制备主要采用两种方法,即后合成法和原位合成法.后合成法是指采用含 N化合物(如尿素等)对已合成的碳材料进行处理,但所制材料中 N含量往往偏低,且 N活性位不够稳定.要得到 N含量较高且稳定的 N掺杂碳材料常常采用原位合成法,即以富氮前体作为模板,在热解过程中 N原位嵌入碳纳米材料中,因而具有结构稳定, N含量丰富等优点.
  金属有机骨架(MOFs)材料是一种新型的类沸石类多孔材料,是由金属离子和有机配体通过配位键键合而成的拓扑结构.该类材料具有较高的孔隙率和比表面积以及结构可调控性等特点.通过调节金属中心和配体种类,引入含 N配体,可以得到不同类型的含 N的 MOFs.此外,含 N的 MOFs在一定温度下热解能有效减少 N元素的流失,因此, MOFs是一类优秀的用于制备 N掺杂碳基纳米材料的模板材料.近年来,以含 N的金属有机骨架材料为模板,通过简单热解一步合成 N掺杂碳基纳米催化剂,已成为国内外研究的热点之一.
  本文在惰性气氛中采用直接热解 Ni基 MOF方法制备了 N掺杂 C包裹的 Ni纳米颗粒,并利用 X射线粉末衍射(PXRD)、N2吸附脱附、扫描电子显微镜(SEM)、透射电子显微镜(TEM)、原子吸收光谱(AAS)、X射线光电子能谱(XPS)等对该复合材料的组成和结构进行了表征.
   PXRD测试结果表明,经过热解,催化剂中出现了大量的金属 Ni粒子,说明 Ni-MOF中的 Ni2+离子在热解过程中被原位还原成了 Ni纳米颗粒. N2吸附脱附结果表明,热解前的 Ni-MOF结构中只存在微孔结构,但是热解 Ni@C-N材料中生成了大量的介孔或大孔结构,从而有利于反应底物与催化剂活性位点的接触. SEM结果表明,在较低的温度下热解,催化剂可以保持 MOFs原来的构型,且结构疏松多孔;而在较高的温度下热解,如800oC,将有大量的碳纳米管生成. TEM结果表明,随着热解温度升高,催化剂中 Ni纳米颗粒逐渐增大.从 HRTEM测试结果可以清晰看出,高温热解时有石墨烯结构生成,并且生成的 Ni纳米颗粒原位嵌入了石墨烯结构中,因而有利于 Ni纳米颗粒的分散,从而提高催化剂的活性. XPS结果进一步证明,热解过程中, Ni2+被原位还原成了零价的 Ni纳米粒子,此外, N 1s谱图也进一步证明 N在热解过程中原位嵌入了生成的石墨烯结构中.
  随后,以乙基苯选择性氧化为模型反应,测试了 Ni@C-N材料的催化活性.结果表明,该材料在烷烃选择氧化反应中表现出很高的催化活性和选择性,尤其是 Ni@C-N-900-8h,在温和的反应条件下,可有效催化一系列饱和烷烃的选择氧化,获得很高的氧化产物收率,且重复利用多次后其活性和选择性没有明显的下降.

关键词: , 纳米粒子 , 金属有机骨架 , 烷烃 , 氧化 , 多相催化

金属有机骨架基催化剂在加氢反应中的应用

陈芝杰 , 陈俊英 , 李映伟

催化学报 doi:10.1016/S1872-2067(17)62852-3

加氢是现代化工产业中的一类主干反应,广泛应用于精细化学品、药物、食品、染料、功能聚合物及香料等制造产业中.高效催化剂的引入使得加氢反应能够在相对温和的条件下还原各类不饱和化合物.金属催化剂在加氢反应中活性高,所需的反应温度较低,适用性广,但是容易和S,N,As和P等元素结合而"中毒"失去反应活性.金属氧化物催化剂和金属硫化物催化剂具有一定的抗毒性,但活性相对较差,通常需要采用高温高压的反应条件,对催化剂本身和反应器的要求较为苛刻.传统催化剂在反应中具有一定的局限性,所以亟需开发新一代高效的加氢催化剂,在保证高活性和高选择性催化效果的同时,降低对能源的消耗和对环境的负面影响.金属有机骨架(MOFs)作为一种新型的多孔材料在过去二十年中受到相当大的关注,并在催化、气体存储和分离、传感器、发光材料和药物输送等众多领域的应用中表现出卓越的性能.利用MOF材料良好的相容性,将MOF和其它功能材料结合形成新的复合材料可以在更大程度上扩大MOF材料的应用领域.与传统的催化剂相比,MOF基材料具有优异的物理化学特性和结构可调性,通过合理的设计能够满足不同的催化加氢过程:(1)MOF基催化剂具有多样且特异性的活性位点.除了组成MOF材料的金属离子/簇和功能有机配体之外,MOF材料可通过封装其他活性物质或者被活性物质包裹等方式引入其他类型的催化位点,进一步扩大MOF基催化剂在不同催化加氢中的适应性.此外,不同的活性位点之间的协同作用又能特异性地促进反应的进行,对提高反应的选择性起到重要的作用.(2)活性位点的尺寸大小和空间分布可以被有效控制.这能影响到催化剂在催化反应过程中的活性和选择性,并且通过MOF材料的限域效应,同时能增强活性位点的稳定性和耐久性.(3)高比表面积能提高MOF基催化剂的催化活性.这种结构特性不仅可以增加MOF基催化剂的活性位点,而且能够吸附反应物和还原剂达到扩大其局部浓度的效果.(4)反应分子的扩散可通过调节MOF基催化剂的结构实现控制.通过调整MOF材料的孔窗口和通道的尺寸,能够改变反应物在催化剂内部的扩散途径,影响底物和活性位点的接触,能进一步影响反应的活性和选择性.本文总结了近几年来MOF基材料在不同的催化加氢反应中的应用,其中包括烯烃、炔烃、芳硝基化合物、肉桂醛、糠醛和苯等化合物的加氢反应.首先介绍了MOF基材料中不同类型的活性位点,除了MOF材料自身的金属离子/簇和功能有机配体外,MOF基复合材料中的金属纳米颗粒?金属硫化物?金属氧化物?均相催化剂等活性位点可以通过封装或包裹的方式引入.在不同加氢反应中,着重介绍了MOF基催化剂中不同类型活性位点的加氢过程中的催化方式、催化剂本身的结构优化及催化剂与反应底物之间的相互作用,以及这些因素之间的协同作用对反应活性和选择性的影响.最后,讨论了MOF基材料在加氢反应中应用存在的问题以及未来发展展望.

关键词: 金属有机骨架 , 加氢 , 多相催化 , 纳米颗粒 , 化学选择性 , 协同效应

出版年份

刊物分类

相关作者

相关热词