Weili REN
,
Jianting GUO
,
Gusong LI
,
Jiyang ZHOU
材料科学技术(英文)
The influence of strain rate and temperature on the tensile behavior of as-cast and HIPed NiAl-9Mo eutectic alloy was investigated in the temperature range of 700~950℃ and over a strain rate range from 2.08×10-4 s-1 to 2.08×10-2 s-1. The results indicate that HIP process causes an enhancement in ductility and a decrease in ultimate tensile strength (UTS), yield strength (YS), average strain hardening rate as well as a drop in brittle to ductile transition temperature(BDTT) under the same condition. It is noticed that the BDTT of as-cast NiAl-9Mo is more dependent on strain rate than that of HIPed one. The brittle to ductile transition process of the alloy is related to a sharp drop in strain hardening rate. Regardless of strain rate, the fracture morphology changes from cleavage in NiAl phase and debonding along NiAl/Mo interface below the BDTT to microvoid coalescence above BDTT. The apparent activation energy of the BDT of HIPed and as-cast material are calculated to be 327 and 263 kJ/mol, respectively, suggesting that the mechanism is associated with lattice diffusion in NiAl phase.
关键词:
NiAl-9Mo
,
null
,
null
,
null