胡小娟
,
严文俊
,
丁维华
,
俞健
,
黄彦
催化学报
doi:10.1016/S1872-2067(12)60636-6
以多孔A12O3陶瓷为基体材料,采用浸渍法担载NiO后用2B铅笔修饰NiO/Al2O3表面,通过化学镀法沉积约5μm厚的金属钯,还原后成功制得Pd/Pencil/Ni/A12O3膜.为进行对比,还制备了未担载镍的Pd/Pencil/Al2O3膜.膜的表面和断面形貌分别采用扫描电镜和金相显微镜观测,膜的透氢动力学通过H2/N2单气体法测试,并以成分为H2 77.8%,CO 5.2%,CO2 13.5%和CH4 3.5%的原料氢测定了膜的氢分离效果.结果表明,未载镍的Pd/Pencil/A12O3膜只具有氢分离作用,而Pd/Pencil/Ni/A12O3膜还可以有效地将钯膜泄漏的CO和CO2转化为甲烷,因而成为双功能型钯膜.这种双功能膜尤其适用于面向质子交换膜燃料电池(PEMFC)的氢气分离,既有效解决了PEMFC对氢燃料中CO格外敏感的难题,又提高了对钯膜缺陷的容忍度,因而延长了钯膜的使用寿命.
关键词:
钯膜
,
氢分离
,
一氧化碳甲烷化
,
双功能
,
镍催化剂
,
质子交换膜燃料电池
赵永慧
,
李圣刚
,
孙予罕
催化学报
doi:10.1016/S1872-2067(12)60565-8
使用密度泛函理论研究了Pd掺杂的Ni(111),Ni(100)和Ni(211)表面最稳定的结构,同时考察了干净的和Pd掺杂的Ni表面催化CH4解离反应的活性.结果表明,由Pd原子取代最外层Ni原子而形成的表面Pd掺杂的Ni表面在热力学上最为稳定,亚表面Pd掺杂的Ni表面在热力学上都不稳定;而对于表面Pd吸附的Ni表面,只有Pd/Ni(211)表面是稳定的,表面掺杂的Pd/Ni表面上CH4解离中间体(CH4,CH3,CH,C,H)吸附能的计算结果表明,Pd的掺杂在不同程度上减弱了除CH4之外各解离中间体的吸附能.另外,CH4和CH均优先在Ni(211)和Pd/Ni(211)台阶面上解离,其次是在比较开阔的Ni(100)和Pd/Ni(100)表面上.Pd的掺杂不同程度上提高了CH4和CH解离的能垒,对于活性最高的Ni(211)面,Pd的掺杂使得CH脱氢的能垒较CH4脱氢的高,改变了其速率控制步骤,从而抑制了积碳的生成.
关键词:
甲烷重整
,
镍催化剂
,
钯掺杂
,
积碳
,
密度泛函理论
宋奇
,
蔡嘉莹
,
张俊杰
,
于维强
,
王峰
,
徐杰
催化学报
doi:10.1016/S1872-2067(12)60535-X
研究了Ni基催化剂上木质素模型化合物苯基苯乙醚中C-O-C键加氢裂解性能.结果表明,Ni/C催化剂显示出优异的加氢裂解能力,苯基苯乙醚的转化率达到99%以上.Ni/C催化剂的还原方法对裂解选择性有重要影响;氢气还原制备的Ni/C-H催化剂上,C-O-C键裂解选择性为85%.Ru/C和Pd/C催化剂上裂解选择性分别为40%和69%.采用碳热还原方法制备的Ni/C-C催化剂,可以实现高选择性加氢和裂解,C-O-C键裂解选择性达到99%以上,其中芳烃化合物收率为44%.这可能与镍组分和载体碳之间的相互作用有关.
关键词:
木质素模型化合物
,
苯基苯乙醚
,
加氢裂解
,
镍基催化剂
,
芳香化合物
张俊杰
,
路芳
,
于维强
,
卢锐
,
徐杰
催化学报
doi:10.1016/S1872-2067(15)60976-7
山梨醇是重要的生物基平台化合物,其选择加氢裂解制备乙二醇和1,2-丙二醇等低碳二元醇,是一个具有重要科学意义和应用前景的催化过程.山梨醇氢解反应涉及C-C键和C-O键等化学键的裂解,裂解选择性尤为关键.通常情况下,添加NaOH,KOH,Ca(OH)2,CaO和Ba(OH)2等碱性物质可增加糖醇转化率和二元醇选择性,但也会生成大量乳酸等副产物.研究乳酸的生成途径,探索抑制乳酸生成的方法,对于提高山梨醇加氢裂解制备低碳二元醇的选择性具有重要意义.本文以Ni/C催化剂上山梨醇加氢裂解反应为模型反应,研究了碱性化合物添加剂类型及其用量对乳酸生成的影响.根据加氢裂解机理分析可知,糖醇氢解主要涉及以下关键步骤:在碱的存在下,多元醇在金属催化剂上发生脱氢反应生成相应的羰基中间体;然后,羰基中间体在碱性介质中通过逆羟醛缩合反应,发生C-C键断裂.因此,在糖醇氢解反应和C-C键断裂中,添加碱性化合物将会不可避免地生成乳酸.结果表明,以NaOH和Ca(OH)2为添加剂时,山梨醇加氢裂解生成乳酸的选择性分别为15.1%和8.9%.而以La(OH)3为添加剂时,生成乳酸的选择性仅为0.1%.以Ca(OH)2和La(OH)3为添加剂时反应具有高活性,山梨醇转化率均可达到99%以上.分别以Ca(OH)2和La(OH)3为添加剂,研究了碱性添加剂用量对山梨醇氢解反应的影响.结果表明,以Ca(OH)2为添加剂时,山梨醇转化率和乳酸选择性均随着Ca(OH)2用量增加而增加;当OH-投料量为11.06 mmol时,乳酸选择性可达11.7%.而以La(OH)3为添加剂时,即使La(OH)3用量仅为0.08 mmol时,山梨醇转化率也可高达99%;继续增加La(OH)3用量,对乳酸的选择性影响不大;当OH-投料量为11.06 mmol时,乳酸选择性也只有0.3%.对山梨醇加氢裂解反应分析可知,与Ca(OH)2相比,La(OH)3添加剂可使C2和C4产物的总选择性从20.0%增加到24.5%.上述结果表明La(OH)3可高效促进山梨醇加氢转化.为了探索Ca(OH)2或La(OH)3为添加剂时山梨醇加氢裂解产物分布不同的本质原因,以Ni/C催化剂催化的丙酮醛加氢转化为探针反应,探讨了乳酸形成的可能路径.结果表明,丙酮醛可能是山梨醇氢解反应的关键中间体之一.在仅以Ni/C催化加氢时,丙酮醛容易被转化为1,2-丙二醇;当只存在碱性添加剂时,丙酮醛可发生重排并被转化为乳酸主产物,这可能是乳酸生成的主要原因.进一步研究表明,以Ca(OH)2为添加剂时,乳酸选择性是以La(OH)3为添加剂时的1.9倍.在Ni/C催化剂和碱性添加剂共存时,由于碱性添加剂的区别,则会得到不同选择性的1,2-丙二醇和乳酸.结果表明,通过丙酮醛催化加氢可得到1,2-丙二醇,也可以通过重排反应生成乳酸;这两类反应是竞争性的.在山梨醇氢解反应中,以Ca(OH)2为添加剂时,加氢反应和重排反应均可发生.而以La(OH)3为添加剂时,丙酮醛加氢反应占主导,仅生成微量乳酸.该研究对提高山梨醇催化加氢裂解选择性具有参考意义.
关键词:
乳酸
,
碱
,
山梨醇
,
催化氢解
,
镍催化剂
M. Y. Lee
,
J. S. Nam
,
J. H. Seo
催化学报
doi:10.1016/S1872-2067(15)61071-3
采用射频热等离子体制备了Ni含量为50 mol%的Ni-CeO2催化剂,考察了其在甲烷部分氧化反应中的催化活性.在催化剂制备过程中,采用板功率为52 kVA的射频等离子体火炬将Ni(直径约5μm)和CeO2粉末(直径约200 nm)混合物同时加热,粉末添加速率约为120 g/h. X射线衍射和透射电镜表征结果表明,所用前驱体形成了高结晶的CeO2载体,其表面Ni颗粒的粒径较小(<50 nm).在常压、500 oC以上、反应物中CH4:O2=2:1(摩尔比),并用Ar稀释的条件下考察了所制样品的甲烷部分氧化反应性能.结果表明,尽管所制样品中Ni含量较高(~50 mol%),但在550 oC反应24 h后,甲烷转化率为70%以上, CO和H2选择性大于90%,有少量积碳.然而,在750 oC反应24 h时,催化剂表面形成了丝状碳,甲烷转化率升至90%以上.
关键词:
射频热等离子体
,
甲烷
,
部分氧化
,
镍催化剂
,
氧化铈
,
积碳