李佳
,
刘会园
,
吕洋
,
郭新闻
,
宋玉江
催化学报
doi:10.1016/S1872-2067(16)62454-3
质子交换膜燃料电池(PEMFCs)环境友好,具有高的能量转换效率,已受到了广泛的关注.目前,铂基电催化剂广泛使用在 PEMFCs中,但铂的储量有限,活性低,耐久性差,成本高,急需开发高性能的非贵金属电催化剂替代铂基电催化剂.非贵金属电催化剂的电化学表征基本上都沿用了铂基电催化剂的评价体系和方法,不一定适用于非贵金属电催化剂的表征.
本文选用铂和石墨为对电极考察其对非贵金属电催化剂在酸性电解质中耐久性测试的影响.当使用铂对电极时,商业 Pt/C电催化剂的氧还原(ORR)活性随着耐久性测试圈数的增加而降低,而非贵金属电催化剂的氧还原活性在耐久性测试过程中的变化规律与商业 Pt/C不同,呈现先降低,后升高的规律.耐久性测试前后的透射电镜(TEM)分析表明非贵金属电催化剂经过耐久性测试后,在电催化剂表面生长了铂纳米颗粒.高分辨透射电镜(HRTEM)和能量色散 X射线光谱(EDX)进一步证明以铂为对电极的三电极体系,在进行非贵金属电催化剂耐久性测试的过程中,非贵金属电催化剂表面生长了铂纳米颗粒,使得非贵金属电催化剂的 ORR活性在耐久性测试后得到显著提高.耐久性测试前后,非贵金属电催化剂氧还原过程的电子转移数由3.7变为4.0,再次证明了耐久性测试过程中铂颗粒的生成.在三电极电化学体系中,当工作电极发生阴极反应时,对电极为阳极反应,反之亦然,即在工作电极上发生的任何电化学过程,都会在对电极上完成相反的电化学过程.在循环电位扫描过程中,当铂对电极的电压高于1.0 V (vs RHE)时,开始发生铂的溶解现象,并且当电压高于1.2 V (vs RHE)时,铂的溶解量会急剧增加,部分溶解的铂会扩散到工作电极附近,并在工作电极的非贵金属电催化剂表面发生沉积作用.随着扫描圈数的增加,沉积的铂纳米颗粒的数量增加,颗粒变大,从而使非贵金属电催化剂的表观 ORR活性显著提高.该现象使得非贵金属电催化剂在酸性电解质中无法表现出其真实的耐久性.当选用石墨棒为对电极材料时,非贵金属电催化剂在酸性电解质中的 ORR活性不会受到对电极材料的影响.
通过考察对电极材料对非贵金属电催化剂在酸性电解质中耐久性能的影响,可以得出结论,即对非贵金属电催化剂在酸性电解质中的耐久性测试中,不宜使用铂对电极,应该使用石墨为对电极材料,以防止对电极材料干扰耐久性测试.
关键词:
非贵金属电催化剂
,
铂对电极
,
石墨对电极
,
加速老化测试
,
酸性电解质
任素贞
,
郭亚男
,
马少博
,
毛庆
,
吴丹丹
,
杨莹
,
景洪宇
,
宋雪旦
,
郝策
催化学报
doi:10.1016/S1872-2067(17)62846-8
燃料电池具有较高的能量密度和发电效率,以清洁能源为原料,零污染排放,是一种具有发展前景的能量储存和转化装置.阴极氧还原反应(ORR)在燃料电池中起着关键作用.ORR广泛采用贵金属铂基催化剂,但是它们价格昂贵,电子动力学转移速率慢,碱性条件下易团聚,这些亟需解决的问题阻碍了燃料电池商业化进程.近期,一些非贵金属催化剂被广泛研究,例如氮掺杂碳材料、Fe/N/C和Co/N/C材料等,它们有可能在未来替代铂基催化剂.我们的目标是合成新型高催化活性的Co/N/C及其衍生非贵金属材料,用于ORR催化反应.由于石墨烯具有独特的形貌、较大的比表面积和良好的导电性,其表面含有功能化的官能团,所以我们选择石墨烯作为碳载体.首先,用改性休克尔方法合成了氧化石墨烯(GO),为了提高其催化活性,采用聚吡咯作为氮源对其进行了氮掺杂,制备了聚吡咯/氧化石墨烯(Ppy/GO).通过ORR催化性能测试发现,GO对ORR具有一定的催化活性,它的起始电位和阴极电流电位分别为–0.31 V vs SCE和–0.38 V vs SCE;Ppy/GO的起始电位和阴极电流电位分别为–0.20 V vs SCE和–0.38 V vs SCE,氮掺杂对GO的催化活性有所提高.采用水热法沉积氧化钴合成了Co3O4/聚吡咯/氧化石墨烯(Co3O4/Ppy/GO).其形貌为Co3O4分散在氮掺杂GO表面.在KOH电解质(0.1 mol/L)中测试,Co3O4/Ppy/GO的起始电位和阴极电流电位分别为–0.20 V和–0.38 V vs SCE.经过800℃高温煅烧处理后,Co3O4/Ppy/GO-800的催化活性明显提高,起始电位和阴极电流电位分别达到–0.10 V和–0.18 V vs SCE.ORR电子转移数为3.4,接近于4电子反应途径.Co3O4/Ppy/GO对ORR的催化活性及4电子催化选择性较高,可能是由于纳米形态的Co3O4和Ppy/GO之间具有较强的表面作用力,聚吡咯掺杂的氧化石墨烯具有较强的电子储存及释放能力.综上,我们通过水热法制备了钴、氮共掺杂的GO,并研究了其对ORR的催化活性和电子转移选择性.结果表明Co3O4/Ppy/GO是一种高效的非贵金属电催化剂,在碱性电解质中具有很高的ORR催化活性,在燃料电池阴极催化剂方面很有前景.
关键词:
非贵金属电催化剂
,
四氧化三钴
,
聚吡咯
,
氧化石墨烯
,
氧还原反应
,
质子交换膜燃料电池