赵云
,
刘家旭
,
熊光
,
郭洪臣
催化学报
doi:10.1016/S1872-2067(16)62579-2
水热稳定性是决定沸石分子筛工业应用价值的重要影响因素.众所周知,沸石材料的水热稳定性主要受其拓扑机构及骨架硅铝组成的影响,但同时也受其晶粒尺寸的影响.纳米级HZSM-5沸石虽然具有优异的催化性能及抗积碳失活性能,但由于晶粒尺寸较小,导致其水热稳定性较差.如何提高纳米HZSM-5沸石的水热稳定性,使其能够在高苛刻度的水热环境下(如催化裂化过程,催化剂再生需在高于700℃的水热条件下进行)得到应用,是十分有意义的课题.已有研究表明,磷改性可以提高ZSM-5沸石的水热稳定性,但多集中于采用磷酸、磷酸氢二铵、磷酸二氢铵等无机磷化物进行改性,水热稳定性提高效果不能令人满意.我们研究组采用有机磷化合物磷酸三甲酯改性纳米HZSM-5沸石,在提高纳米HZSM-5沸石水热稳定性方面取得了较好的效果.采用X射线衍射(XRD)、氨气程序升温脱附(NH3-TPD)、氮气物理吸附、氨气吸附红外光谱等手段对改性沸石进行了表征.结果表明,采用磷酸三甲酯改性的纳米HZSM-5沸石水热稳定性得到明显提高,沸石经苛刻的高温水蒸气处理(800℃,4 h)后,在相对结晶度、孔结构、酸度的保留度方面具有较大提高,提高幅度明显高于无机磷化合物磷酸氢二铵改性的纳米HZSM-5沸石.在上述研究基础上,我们采用固定床微反模拟流化床反应条件对磷改性纳米HZSM-5沸石上全馏分FCC汽油烯烃组分催化裂解反应进行了研究.结果表明,在反应温度540℃,剂/油比等于4,油剂接触时间约为4 s的条件下,全馏分FCC汽油在磷改性纳米HZSM-5沸石上经烯烃组分催化裂解反应后,油品烯烃含量(尤其是重烯烃)明显降低,生成了大量高附加值的C2–C4烯烃,同时油品中芳烃含量增加.与此同时,经烯烃组分裂解后的油品还呈现出辛烷值升高,硫含量降低的有利变化.可以看出,磷改性纳米HZSM-5沸石上全馏分FCC汽油烯烃组分催化裂解是解决FCC汽油烯烃含量高的一条有效途径,充分克服了现有FCC汽油加工工艺存在的一些缺陷,如S-zorb工艺功能单一、成本高;加氢脱硫工艺油品辛烷值损失大、氢耗高;以及OTA技术(本研究组之前的工作)烯烃转化率低、催化剂积碳失活快等缺陷.值得注意的是,磷酸三甲酯改性的纳米HZSM-5沸石在全馏分FCC汽油烯烃组分催化裂解反应性能方面,明显比磷酸二氢铵改性的纳米HZSM-5沸石表现优异.通过我们的研究可以认为,磷酸三甲酯改性将会为纳米HZSM-5沸石在高苛刻度水热条件下的应用提供更多的机会.
关键词:
水热稳定性
,
纳米HZSM-5
,
磷改性
,
烯烃催化裂解
,
FCC汽油