张银霞
,
杨乐乐
,
郜伟
,
苏建修
人工晶体学报
本文对采用截面显微检测法检测SiC晶片亚表面损伤时样品的制备、腐蚀液配方及腐蚀环境进行了系统地研究,并重点分析了固结磨料研磨SiC晶片(0001) Si面和(0001)C面亚表面损伤的深度及微裂纹构型.结果表明,采用腐蚀液配方为KOH:K2CO3 =20 g∶1 g,在420℃下腐蚀3min时亚表面损伤观测效果较好.在研磨压力为2 psi、金刚石磨粒粒径14 μm时,固结磨料研磨SiC晶片的亚表面损伤层深度约为2.6 μn,亚表面微裂纹构型有垂线状、斜线状、钩状、叉状、树枝状、人字状以及横线状.在相同的加工条件下,SiC晶片的(0001) Si面和(0001)C面的损伤深度基本相同.
关键词:
SiC晶片
,
截面显微法
,
亚表面损伤
,
固结磨料研磨
王明福
,
汪长安
,
尉磊
,
张幸红
稀有金属材料与工程
研究了以氮化铝(AlN)为助烧剂的碳化硅晶片(SiC_(pl))增韧二硼化锆(ZrB_2)复合陶瓷材料的制备工艺,并测定其抗弯强度、断裂韧性、致密度和显微硬度.利用扫描电子显微镜(SEM)观察了样品的表面及断面形貌.复合陶瓷中SiC晶片的添加量分别为5%, 10%, 15%以及20%(体积分数, 下同),AlN作为烧结助剂添加量为3%.结果表明:适量SiC晶片的添加提高了SiC_(pl)/ZrB_2复合陶瓷的烧结致密度;SiC_(pl)/ZrB_2复合陶瓷的力学性能比纯ZrB_2陶瓷有所提高,抗弯强度和维氏硬度在5%SiC晶片添加量时达到最大,分别为(625.34±21.46) MPa和(14.60±0.84) GPa;断裂韧性在15%SiC晶片添加量时达到最大值(8.35 ± 0.26) MPa·m~(1/2).断口形貌观察表明主要增韧机制为裂纹偏转与晶片拔出.
关键词:
ZrB_2
,
SiC晶片
,
复合陶瓷
,
力学性能
王栋
,
张银霞
,
郜伟
,
杨乐乐
,
苏建修
人工晶体学报
SiC晶片研磨加工表面层损伤深度直接影响后续抛光加工的成本和效率,但SiC单晶是典型的难加工材料,亚表面损伤检测极为困难.文中利用截面显微检测技术对SiC晶片研磨加工亚表面损伤深度进行了检测分析,并研究了研磨方式、工艺参数对损伤深度的影响及晶片上损伤深度的分布规律.结果表明,同样的研磨工艺参数条件下,固结磨料研磨SiC晶片损伤深度略小于游离磨料研磨晶片的损伤深度.固结磨料研磨时,随着磨料粒度从W7增大到W28,损伤深度由3.0 μm增大到4.7 μm.随着研磨压力从1 psi增大到3 psi,晶片损伤深度从4.1 μm增大到4.9 μm.在整个晶片上,损伤深度由中心向边缘沿径向逐渐增大,增大幅度约为0.6~1.0 μm.
关键词:
SiC晶片
,
研磨加工
,
损伤深度
,
固结磨料