A. Alizadeh
材料科学技术(英文)
In this study, aluminum alloy (Al-2 wt% Cu) matrix composites reinforced with 1, 2 and 4 wt% boron carbide nanoparticles fabricated through mechanical milling with average size of 100 nm were fabricated via stir casting method at 850°C. Cast ingots of the matrix alloy and the composites were extruded at 500°C at an extrusion ratio of 10:1 to investigate the effects of hot extrusion on the mechanical properties of the composites. The microstructures of the as-cast and the extruded composites were investigated by scanning electron microscopy (SEM). Density measurement, hardness and tensile tests were carried out to identify the mechanical properties of the composites. The extruded samples revealed a more uniform distribution of B4C nanoparticles. Also, the extruded samples had strength and ductility values superior to those of the as-cast counterparts. In the as-cast and the extruded samples, with increasing amount of B4C nanoparticles, yield strength and tensile strength increased but elongation to fracture decreased.
关键词:
Stir casting
J.J.Park
,
G.H.Kim
,
S.M.Hong
,
S.H.Lee
,
M.K.Lee
,
C.K.Rhee
材料科学技术(英文)
In the present work, the dispersion casting of Y2O3 particles in aluminum-copper alloy was investigated in terms of microstructural changes with respect to Cu contents of 20 (hypo), 33 (eutectic) and 40 (hyper) wt pct by scanning electron microscopy (SEM) and energy dispersive spectroscopy (EDS). For the fabrication of Al-Cu alloy dispersed Y2O3 ceramic particles, stir casting method was employed. In case of Al-20 wt pct Cu alloy (hypoeutectic), SEM images revealed that primary Al was grown up in the beginning. After that, eutectic phase with well dispersed ceramic particles was formed. In case of eutectic composition, Y2O3 particles were uniformly dispersed in the matrix. When the Cu is added into Al up to 40 wt pct (hypereutectic), primary θ phase was grown up without any Y2O3 ceramic particles in the early stage of solidification. Thereafter, eutectic phase was formed with well dispersed ceramic particles. It can be concluded that Y2O3 ceramic particles is mostly dispersed in case of eutectic composition in Al-Cu alloy.
关键词:
Dispersion casting
,
null
,
null
,
null