{"currentpage":1,"firstResult":0,"maxresult":10,"pagecode":5,"pageindex":{"endPagecode":5,"startPagecode":1},"records":[{"abstractinfo":"利用氟化物引入稳定离子,通过燃烧合成技术制备出低氧含量的α-SiAlON陶瓷粉体,并且运用XRD和SEM对燃烧产物进行了表征.结果表明,与通常氧含量较高的组成相比,低氧含量组成合成出的粉体相纯度稍低,晶粒择优生长不显著,产物主要为等轴状颗粒.研究还发现,在Ca α-SiAlON系统中存在一个氧含量的门槛值,当试样的起始组成中实际氧含量低于此值时,燃烧产物中没有α-SiAlON生成.","authors":[{"authorName":"刘光华","id":"8b1d7f28-2754-4493-919d-bd019dae97e1","originalAuthorName":"刘光华"},{"authorName":"陈克新","id":"53c1782f-1438-4a49-8e0e-b9fc788913f5","originalAuthorName":"陈克新"},{"authorName":"周和平","id":"d71eabbc-c9f7-49cd-9ce6-672be397c8e5","originalAuthorName":"周和平"},{"authorName":"任克刚","id":"e960a80d-8e37-45b2-9eba-510c2b55886f","originalAuthorName":"任克刚"},{"authorName":"钟继东","id":"c81fbc9e-2e04-448d-b3ed-c7c8d2f4736c","originalAuthorName":"钟继东"},{"authorName":"金海波","id":"5db7759a-f0ff-47e2-b828-a8b9be158a1e","originalAuthorName":"金海波"},{"authorName":"宁晓山","id":"1aa809aa-2e80-4d4d-9e8e-118dd6316c9c","originalAuthorName":"宁晓山"}],"doi":"","fpage":"159","id":"0083c705-426c-47d6-b1e3-ea7090686745","issue":"z1","journal":{"abbrevTitle":"XYJSCLYGC","coverImgSrc":"journal/img/cover/XYJSCLYGC.jpg","id":"69","issnPpub":"1002-185X","publisherId":"XYJSCLYGC","title":"稀有金属材料与工程"},"keywords":[{"id":"84570f78-f92d-403d-bd65-308787887985","keyword":"燃烧合成","originalKeyword":"燃烧合成"},{"id":"9b1bf0aa-b25e-4866-bc1c-e08a05d983d6","keyword":"α-SiAlON","originalKeyword":"α-SiAlON"},{"id":"0009127b-b739-4ab6-9dd5-db6e565dbd3b","keyword":"低氧含量","originalKeyword":"低氧含量"}],"language":"zh","publisherId":"xyjsclygc2007z1048","title":"添加氟化物燃烧合成低氧含量α-SiAlON粉体","volume":"36","year":"2007"},{"abstractinfo":"通过燃烧合成技术制备单相Yb α-SiAION粉体,然后作为晶种添加到原料中利用SPS技术快速烧结出致密Yb α-SiAION陶瓷.对SPS烧结过程中试样的致密化、相转变和形貌发育进行了研究,并探讨了添加晶种对烧结产物相组成和微观形貌的影响.实验结果表明, SPS可使试样迅速完成致密化过程,适当的烧结温度和保温时间可以促进相转变和晶粒发育. 添加晶种,不仅促进了相转变过程,而且可以在烧结体内获得柱状晶,有助于改善材料的韧性.","authors":[{"authorName":"刘光华","id":"03424708-40ae-4297-a751-d95e87cdcd1f","originalAuthorName":"刘光华"},{"authorName":"陈克新","id":"d37947c0-d8d0-4c77-86ee-05a71bdb4f4e","originalAuthorName":"陈克新"},{"authorName":"周和平","id":"6f1fe642-2c27-413c-a875-ee653d64c6f4","originalAuthorName":"周和平"},{"authorName":"郭俊明","id":"73822168-fc87-4850-ae5c-89a7d4260115","originalAuthorName":"郭俊明"},{"authorName":"宁晓山","id":"04c4e3c5-a1bb-4af0-be68-ce52b0282773","originalAuthorName":"宁晓山"}],"categoryName":"|","doi":"","fpage":"659","id":"06d30c51-dbd4-42d0-b674-db9b038eb6a6","issue":"3","journal":{"abbrevTitle":"WJCLXB","coverImgSrc":"journal/img/cover/WJCLXB.jpg","id":"62","issnPpub":"1000-324X","publisherId":"WJCLXB","title":"无机材料学报"},"keywords":[{"id":"a63379ac-5f0e-4290-860c-2d3f8eb2b098","keyword":"Yb α-SiAION","originalKeyword":"Yb α-SiAION"},{"id":"85cf479d-dd24-49a5-a860-0e054f60281d","keyword":" combustion synthesis","originalKeyword":" combustion synthesis"},{"id":"59bb3cf2-6a05-4496-8386-d148de87bfee","keyword":" SPS","originalKeyword":" SPS"},{"id":"046f8f05-a3ce-4a1d-bfc6-dc2b993a1028","keyword":" rod-like crystal","originalKeyword":" rod-like crystal"}],"language":"zh","publisherId":"1000-324X_2005_3_23","title":"添加燃烧合成晶种SPS烧结Yb α-SiAlON陶瓷","volume":"20","year":"2005"},{"abstractinfo":"采用 Ti,Al和C粉末为反应物原料,研究了添加金属间化合物TiAl对燃烧合成Ti3AlC2的影响.从动力学和热力学的角度探讨了TiAl对燃烧合成Ti3AlC2的影响机理.实验结果表明,仅以单质粉末Ti,Al和碳黑为原料,按Ti3AlC2化学计量比配料,燃烧产物的主要物相是TiC,只能得到少量Ti3AlC2相,但在保持原料配比不变的情况下,在反应物原料中添加金属间化合物TiAl(20%~35%)(质量百分数)后,燃烧合成产物中Ti3AlC2的含量显著增加,成为燃烧产物的主要物相,而TiC的含量则显著减少.燃烧产物中Ti3AlC2的含量随添加TiAl量的增加而显著增多.","authors":[{"authorName":"郭俊明","id":"a5329cb3-0866-4959-98f3-22254d6f7acb","originalAuthorName":"郭俊明"},{"authorName":"陈克新","id":"8b56cbd7-7783-4647-8b68-9571930b9023","originalAuthorName":"陈克新"},{"authorName":"刘光华","id":"702eab4d-4564-4692-a017-876cfb087db8","originalAuthorName":"刘光华"},{"authorName":"葛振斌","id":"80dc97cf-1242-4678-b37e-8a1d08693114","originalAuthorName":"葛振斌"},{"authorName":"周和平","id":"f78abc78-983d-4402-bc0d-ca594345ba71","originalAuthorName":"周和平"},{"authorName":"宁晓山","id":"d1aa0341-c3e0-4237-b11c-9c97cc65dfe0","originalAuthorName":"宁晓山"}],"doi":"","fpage":"59","id":"16d34626-a2d9-4087-88b3-d6e699d61604","issue":"1","journal":{"abbrevTitle":"XYJSCLYGC","coverImgSrc":"journal/img/cover/XYJSCLYGC.jpg","id":"69","issnPpub":"1002-185X","publisherId":"XYJSCLYGC","title":"稀有金属材料与工程"},"keywords":[{"id":"0918e7a9-2240-4da7-8b35-519ba195762c","keyword":"燃烧合成","originalKeyword":"燃烧合成"},{"id":"f2991692-0b9b-432c-bff8-4b1cb91816ee","keyword":"Ti-Al-C系","originalKeyword":"Ti-Al-C系"},{"id":"e1ede249-f789-4f6f-b49e-67ea1d3781f7","keyword":"Ti3AlC2","originalKeyword":"Ti3AlC2"},{"id":"3665f18c-179f-4ddd-9ab9-328af20f6d19","keyword":"TiAl","originalKeyword":"TiAl"}],"language":"zh","publisherId":"xyjsclygc200401015","title":"添加TiAl对燃烧合成Ti3AlC2粉体的影响","volume":"33","year":"2004"},{"abstractinfo":"以球形硅微粉为主要原料,在Ca(OH)2-H2O体系中通过表面包覆使其具有微纳米阶层结构,经疏水改性处理后用来制备超疏水表面.应用扫描电子显微镜等手段对样品进行了表征,并进行对比分析,探讨了酸洗浓度、包覆温度、加热时间对复合硅微粉表面性能的影响.","authors":[{"authorName":"王琦","id":"37bd7fe6-d28e-43db-ad16-b3b9bd4481d3","originalAuthorName":"王琦"},{"authorName":"杨玉芬","id":"2a16f3d2-0f37-46cc-9383-c1f5ed9af160","originalAuthorName":"杨玉芬"},{"authorName":"傅承诵","id":"137db3e1-581e-47ca-adf2-5c17673839b8","originalAuthorName":"傅承诵"},{"authorName":"盖国胜","id":"77c1abb0-6d94-41bb-bb10-b1cbb0f74802","originalAuthorName":"盖国胜"},{"authorName":"宁晓山","id":"afe1da03-f2f4-451d-a041-5c4a372253e8","originalAuthorName":"宁晓山"}],"doi":"10.3969/j.issn.1001-4381.2010.z2.022","fpage":"79","id":"172464c3-1084-4904-acc7-adcf62946411","issue":"z2","journal":{"abbrevTitle":"CLGC","coverImgSrc":"journal/img/cover/CLGC.jpg","id":"9","issnPpub":"1001-4381","publisherId":"CLGC","title":"材料工程"},"keywords":[{"id":"dfbcdfce-514c-4b4e-b632-df0f798df82d","keyword":"复合硅微粉","originalKeyword":"复合硅微粉"},{"id":"a0871dd6-d263-4e8e-9510-f7973f7897b1","keyword":"微纳米结构","originalKeyword":"微纳米结构"},{"id":"6aca6f91-5c5c-4187-9cb5-626dd4f2c752","keyword":"超疏水","originalKeyword":"超疏水"},{"id":"8015d563-7c59-4178-abaf-b480b159c169","keyword":"接触角","originalKeyword":"接触角"}],"language":"zh","publisherId":"clgc2010z2022","title":"复合硅微粉及其超疏水表面的制备与表征","volume":"","year":"2010"},{"abstractinfo":"采用一种新的界面无氧化方法,将氮化硅陶瓷浸入铝熔液后移动以除去界面氧化膜,采用X射线衍射、扫描电子显微镜及透射电子显微镜等方法研究氮化硅陶瓷和铝熔液之间的界面反应.研究结果表明,该方法能够有效除去界面氧化膜,使铝和氮化硅陶瓷直接反应生成AlN,但反应很缓慢,明显慢于Si_3N_4/Al薄膜体系以及压实的氮化硅-铝混合粉末体系的反应,界面存在着未反应、铝原子直接生长于氮化硅晶体之上的界面的连接状态.氮化硅陶瓷与铝的直接反应一方面会破坏氮化硅晶格结构,使氮化硅陶瓷腐蚀,缩短使用寿命;另一方面却可促进氮化硅和铝的润湿及连接,有利于制备高性能复合材料.","authors":[{"authorName":"李国才","id":"874f91f3-211e-4b6e-8a96-9d70c37953ae","originalAuthorName":"李国才"},{"authorName":"宁晓山","id":"248cad79-7118-444b-88c5-89ef0fef701c","originalAuthorName":"宁晓山"},{"authorName":"陈克新","id":"d3b186b7-19b7-4aad-b104-7b893df721c0","originalAuthorName":"陈克新"},{"authorName":"周和平","id":"e16bfa22-77bd-4c73-9158-714d71d73ae7","originalAuthorName":"周和平"}],"doi":"","fpage":"186","id":"1ce72854-f300-4820-b47c-30bc91cf85a2","issue":"z2","journal":{"abbrevTitle":"XYJSCLYGC","coverImgSrc":"journal/img/cover/XYJSCLYGC.jpg","id":"69","issnPpub":"1002-185X","publisherId":"XYJSCLYGC","title":"稀有金属材料与工程"},"keywords":[{"id":"438ea061-8f35-4a9e-9f7e-c026d53c285d","keyword":"界面反应","originalKeyword":"界面反应"},{"id":"48377f47-53c3-4463-8646-b28c509bf8f8","keyword":"氮化硅陶瓷","originalKeyword":"氮化硅陶瓷"},{"id":"4f196e71-ae34-48f6-bfce-a0705300c8e2","keyword":"铝","originalKeyword":"铝"}],"language":"zh","publisherId":"xyjsclygc2009z2050","title":"界面无氧化膜条件下氮化硅陶瓷和铝溶液的反应","volume":"38","year":"2009"},{"abstractinfo":"利用燃烧合成技术制备出单相柱状Ybα-SiAlON粉体,研究了原始配方对燃烧产物相组成和微观形貌的影响.结果表明:适量添加α-Si3N4能够减少团聚,有利于N2渗透和Si粉氮化,并可获得Yb α-SiAlON柱状晶.利用α-SiAlON作稀释剂,适量添加NH4F也可获得形态发育良好的Yb α-SiAlON柱状晶.过量添加α-Si3N4和NH4F则会造成反应前期α-Si3N4过剩而部分转化为β-Si3N4,最终导致β-SiAlON的形成.","authors":[{"authorName":"刘光华","id":"05ce70f5-9e18-4054-82b1-0f5423eac8e3","originalAuthorName":"刘光华"},{"authorName":"陈克新","id":"e50dfe41-07c9-47e9-aa4a-9c890ce32bab","originalAuthorName":"陈克新"},{"authorName":"周和平","id":"3f68f806-1034-4e94-8f64-723bafe0bad6","originalAuthorName":"周和平"},{"authorName":"任克刚","id":"56274eb0-c5ae-4a81-a078-0d4f61748c61","originalAuthorName":"任克刚"},{"authorName":"宁晓山","id":"152c1d8d-760f-423b-be7a-66750b47bb7b","originalAuthorName":"宁晓山"}],"doi":"","fpage":"52","id":"1e54d1eb-5713-4631-8af3-af449f3aa369","issue":"z1","journal":{"abbrevTitle":"XYJSCLYGC","coverImgSrc":"journal/img/cover/XYJSCLYGC.jpg","id":"69","issnPpub":"1002-185X","publisherId":"XYJSCLYGC","title":"稀有金属材料与工程"},"keywords":[{"id":"8942080d-fafd-4d7c-bab0-311bf6274f9d","keyword":"Ybα-SiAlON","originalKeyword":"Ybα-SiAlON"},{"id":"0d50f1a0-abcf-466c-bb92-98b37d772e61","keyword":"燃烧合成","originalKeyword":"燃烧合成"},{"id":"61bba028-5035-439a-adba-bde473dc6b65","keyword":"柱状晶","originalKeyword":"柱状晶"}],"language":"zh","publisherId":"xyjsclygc2005z1015","title":"原始配方对燃烧合成Ybα-SiAlON相组成和微观形貌的影响","volume":"34","year":"2005"},{"abstractinfo":"对电流在氮化硅陶瓷放电等离子烧结过程中的作用进行了研究,采用放电等离子烧结工艺,分别对含助烧剂(Y2O3/MgO)氮化硅(α-Si3N4)粉体,以及用纯氮化硅粉体包覆的含助烧剂粉体进行了烧结;并且考虑到包覆层引起的试样烧结温度的差异,在较低温度进行了无包覆试样烧结.实验结果表明:包覆层明显抑制了氮化硅陶瓷的相转变及晶粒生长.通过与低温烧结试样进行对比,排除了包覆层引起的温度差异的影响,认为是SPS电场在氮化硅的烧结过程中通过导电的液相形成电流,促进了溶解在液相中的氮化硅的扩散,从而加快了相转变及柱状晶生长这些和溶解析出相关的过程.","authors":[{"authorName":"马四华","id":"a714d01e-5044-4aac-ab24-b13937f3bec4","originalAuthorName":"马四华"},{"authorName":"宁晓山","id":"63825821-c4f5-46f8-a5fd-1c055d243d2a","originalAuthorName":"宁晓山"},{"authorName":"张洁","id":"8fcb4eb5-999a-49d6-b9a2-619b09c74339","originalAuthorName":"张洁"},{"authorName":"陈克新","id":"d1cc9ebe-9d19-4386-88c6-c222625ea808","originalAuthorName":"陈克新"},{"authorName":"周和平","id":"13145c17-30d5-4b35-b719-2fb93748a88f","originalAuthorName":"周和平"}],"doi":"","fpage":"322","id":"226a549f-db44-499b-8669-2351fb590625","issue":"z1","journal":{"abbrevTitle":"XYJSCLYGC","coverImgSrc":"journal/img/cover/XYJSCLYGC.jpg","id":"69","issnPpub":"1002-185X","publisherId":"XYJSCLYGC","title":"稀有金属材料与工程"},"keywords":[{"id":"421af1e3-e4f0-475e-91af-446186fb5e26","keyword":"放电等离子烧结","originalKeyword":"放电等离子烧结"},{"id":"28c709b1-348a-4b0d-b7d8-7d2290cb367c","keyword":"SPS","originalKeyword":"SPS"},{"id":"863684c6-3de6-460a-9744-fa00cf1fbf75","keyword":"氮化硅","originalKeyword":"氮化硅"},{"id":"b4079fe4-22eb-4a21-a6a1-c4161e3612f9","keyword":"烧结机理","originalKeyword":"烧结机理"},{"id":"5bf42198-5867-49ec-a845-353b735d7f87","keyword":"脉冲电流","originalKeyword":"脉冲电流"}],"language":"zh","publisherId":"xyjsclygc2007z1095","title":"SPS脉冲电流在氮化硅烧结中的作用","volume":"36","year":"2007"},{"abstractinfo":"采用燃烧合成的方法合成NiAl/TiC复相材料,采用XRD分析了合成材料的相组成,结果表明产物由TiC和NiAl相组成,没有其他的物相产生.用SEM研究了合成产物的微观形貌,SEM图像显示产物的宏观形貌为多孔结构,微观形貌观察显示TiC相颗粒呈近球状.NiAl相则包裹在TiC相的周围,形成三维网状结构,靠近TiC颗粒边缘NiAl以胞状方式生长,远离TiC颗粒的NiAl以枝晶方式长大.","authors":[{"authorName":"任克刚","id":"019a99c9-b527-486d-80dd-4f0700459ed5","originalAuthorName":"任克刚"},{"authorName":"陈克新","id":"14a5da30-bf03-4660-841e-0b4621cc7b61","originalAuthorName":"陈克新"},{"authorName":"周和平","id":"db28d70f-8e06-47c7-aaad-12307c6b5437","originalAuthorName":"周和平"},{"authorName":"宁晓山","id":"ba966205-fea0-427a-b9b3-dfd7cc7d033f","originalAuthorName":"宁晓山"},{"authorName":"金海波","id":"a82d995b-58b2-4f6e-bbf4-75a09c4c45c4","originalAuthorName":"金海波"}],"doi":"","fpage":"848","id":"238546c7-5a17-4d59-b2a0-ac6cf79de07e","issue":"z1","journal":{"abbrevTitle":"XYJSCLYGC","coverImgSrc":"journal/img/cover/XYJSCLYGC.jpg","id":"69","issnPpub":"1002-185X","publisherId":"XYJSCLYGC","title":"稀有金属材料与工程"},"keywords":[{"id":"bdb18f48-d5c7-41f6-a936-ac44b28d6905","keyword":"燃烧合成","originalKeyword":"燃烧合成"},{"id":"628bd2bc-e141-45be-a1cb-f8fdf95e6192","keyword":"TiC/NiAl","originalKeyword":"TiC/NiAl"},{"id":"66653e05-397c-48b2-a56f-c2d975de7388","keyword":"复合材料","originalKeyword":"复合材料"}],"language":"zh","publisherId":"xyjsclygc2007z1239","title":"燃烧合成NiAl/TiC复合材料及其微观形貌","volume":"36","year":"2007"},{"abstractinfo":"在氮气气氛下、保温10min、948~1098K利用活性金属铸接方法制备铝/氮化铝陶瓷基板, 用力学试验机、扫描电子显微镜、高温金相光学显微镜和原子力显微镜对铝/氮化铝陶瓷的结合强度和机理进行研究. 结合温度低于973K时, 铝和氮化铝陶瓷之间的剥离强度随结合温度升高线性增大, 当结合温度超过973K时, 结合温度对强度影响很小, 铝和氮化铝陶瓷之间的结合强度约为49N/mm, 铝和氮化铝陶瓷之间的结合为物理湿润和化学反应湿润共同作用.","authors":[{"authorName":"彭榕","id":"9750caa6-5d7a-471d-bd43-5bd83ff1202c","originalAuthorName":"彭榕"},{"authorName":"周和平","id":"74f43e6c-b32a-48ea-8339-7ee91cc2801f","originalAuthorName":"周和平"},{"authorName":"宁晓山","id":"97755ced-a7fa-4a16-adbb-9e5e660fd654","originalAuthorName":"宁晓山"},{"authorName":"徐伟","id":"e7d6e03c-cf96-47a8-ba4f-357f810a0d7c","originalAuthorName":"徐伟"}],"categoryName":"|","doi":"10.3724/SP.J.1077.2011.00249","fpage":"249","id":"30417840-6028-42e8-a5f7-7ce145e53abe","issue":"3","journal":{"abbrevTitle":"WJCLXB","coverImgSrc":"journal/img/cover/WJCLXB.jpg","id":"62","issnPpub":"1000-324X","publisherId":"WJCLXB","title":"无机材料学报"},"keywords":[{"id":"518b02b6-8f80-4647-a7e7-e8003af5008b","keyword":"铝/氮化铝陶瓷基板","originalKeyword":"铝/氮化铝陶瓷基板"},{"id":"e2502ee5-bcd1-45bd-86f6-934005385b33","keyword":"bonding strength","originalKeyword":"bonding strength"},{"id":"c28303be-7465-4f1c-a3f5-27e395e09f3d","keyword":"bonding mechanism","originalKeyword":"bonding mechanism"}],"language":"zh","publisherId":"1000-324X_2011_3_8","title":"铝和氮化铝陶瓷结合强度与机理研究","volume":"26","year":"2011"},{"abstractinfo":"以琼脂替代丙烯酰胺作为凝胶剂制备氧化铝多孔陶瓷,研究了搅拌速度、搅拌时间、凝胶化时间以及添加正戊酸稳泡剂对样品平均孔径的影响.结果表明:样品的平均孔径随搅拌速度的提高而增大,随搅拌时间的延长而减小;添加正戊酸一方面可以减小搅拌起泡气孔孔径,另一方面还可以改善泡沫的高温稳定性,抑制泡沫气孔的成长;采用琼脂泡沫凝胶法,适当控制起泡及凝胶工艺参数,可以制备孔径100 μm以上,孔洞圆整的氧化铝多孔陶瓷.","authors":[{"authorName":"蔡群","id":"d6c87461-ed7b-4d3b-97be-defff0530294","originalAuthorName":"蔡群"},{"authorName":"滕甫","id":"7573c292-06c0-490e-999b-07a785c8e54e","originalAuthorName":"滕甫"},{"authorName":"宁晓山","id":"447f2a3e-054d-4362-8dbb-de59b70bebf0","originalAuthorName":"宁晓山"},{"authorName":"张孝文","id":"1499c7ac-ffa7-4f93-ba33-2e1b809956aa","originalAuthorName":"张孝文"}],"doi":"","fpage":"52","id":"34a150ee-2665-47a0-b8f8-37389adeefc3","issue":"z1","journal":{"abbrevTitle":"XYJSCLYGC","coverImgSrc":"journal/img/cover/XYJSCLYGC.jpg","id":"69","issnPpub":"1002-185X","publisherId":"XYJSCLYGC","title":"稀有金属材料与工程"},"keywords":[{"id":"16943a38-93db-449a-a8ba-7a873b856baf","keyword":"泡沫凝胶法","originalKeyword":"泡沫凝胶法"},{"id":"21cb2e6f-abd0-4a78-9bba-a790cb8d8a2a","keyword":"琼脂凝胶","originalKeyword":"琼脂凝胶"},{"id":"f61b2582-81d1-469c-a558-8be36d10465e","keyword":"氧化铝多孔陶瓷","originalKeyword":"氧化铝多孔陶瓷"},{"id":"cb7a941c-82b1-400c-8278-c0a44d10f4f1","keyword":"正戊酸","originalKeyword":"正戊酸"},{"id":"10a8568e-fb1a-41fc-8da8-a8e8d81576f4","keyword":"搅拌起泡","originalKeyword":"搅拌起泡"}],"language":"zh","publisherId":"xyjsclygc2008z1013","title":"琼脂泡沫凝胶法制备多孔陶瓷","volume":"37","year":"2008"}],"totalpage":42,"totalrecord":416}