鱼银虎
,
汪涛
,
廖秋平
,
缪润杰
,
潘剑锋
,
张度宝
无机材料学报
doi:10.15541/jim20150524
在Ti-B体系中引入PTFE作为反应促进剂,实现了TiB2-TiC粉体的低温固相合成.分别采用热分析仪、X射线衍射仪和场发射扫描电子显微镜,测定了体系的反应温度,表征了生成物的物相和微观形貌,并对其反应过程和反应机理进行了分析.合成实验在氩气炉中进行,结果表明:当添加10wt%PTFE时,能够在550℃通过固相反应制备出平均粒径小于400 nm的TiB2-TiC复合陶瓷粉体.DTA测试表明固相反应合成过程主要包括两步:首先,在低温下PTFE和Ti发生反应并释放出大量的热,然后,诱发Ti和B的固相反应生成TiB2.
关键词:
TiB2-TiC
,
固相合成
,
PTFE
,
反应机理
王刚
,
江少群
,
王泽华
,
谢言
,
周泽华
,
易于
稀有金属
以Fe901、Ti、B4C和h-BN粉为原料,采用反应等离子熔覆方法在Q235钢基本上原位合成了含钛陶瓷相增强Fe基合金熔覆层.研究表明:相比B4C,Fe更易与h-BN反应形成铁硼化物,当同时添加B4C和h-BN时,B4C/h-BN比减小至一定值后将导致熔覆层中FeB含量升高和Ti2N、TiB等中间产物形成,但却可抑制陶瓷相长大.熔覆层显微组织均具有梯度分布特征,TiB2大小和形态受熔池温度和成分影响.熔覆层显微硬度随h-BN添加量增加而降低,Ti∶B4C∶BN摩尔比为3∶1∶0时熔覆层近表面层HV0.2显微硬度可高达11.26 GPa.
关键词:
Fe基合金涂层
,
等离子熔覆
,
原位合成
,
TiB2-TiC
,
TiB2-TiN
张艳凤
,
崔洪芝
,
宋晓杰
,
张珊珊
,
魏娜
,
王珂
复合材料学报
doi:10.13801/j.cnki.fhclxb.20150715.001
以Ti、B4C和SiC晶须(SiCw)为原料,采用自蔓延高温合成法制备了多孔TiB2-TiC复合材料.讨论了SiCw含量对TiB2-TiC复合材料物相、组织形貌、孔隙率和抗压强度的影响.结果表明:不添加SiCw时,复合材料中主要物相为贫硼相TiB和Ti3B4以及TiC和少量TiB2;在5Ti+B4C体系中加入SiCw后,贫硼相TiB和Ti3B4逐渐减少直至消失,而出现富硼相TiB2和TiC的含量增加.随着SiCw含量的增加,复合材料的孔隙率逐渐增加,由38.46%增加至52.78%.当SiCw含量小于1.0时,随着SiCw含量的增加,多孔TiB2-TiC复合材料的抗压强度明显增加,当SiCw含量为1.0时,复合材料的抗压强度达到最大值56.04 MPa.Ti与SiCw反应会生成TiC、Ti3SiC2和TiSi2等物相,消耗一定量的Ti,使得与B4C反应的Ti量减少,从而促进富硼相TiB2形成和TiC的增多.并且在SiCw表面形成颗粒状TiC或者层片状Ti3SiC2,增加SiCw与TiB2-TiC基体之间的结合,更有利于发挥SiCw的强化作用.
关键词:
TiB2-TiC
,
SiCw
,
多孔复合材料
,
反应合成
,
自蔓延高温合成法