Liqing CHEN
材料科学技术(英文)
The 42.1 vol. pct TiC/AZ91D magnesium-matrix composites with interpenetrating networks were fabricated by in-situ reactive infiltration process. The compressive creep behavior of as-synthesized composites was investigated at temperature ranging from 673 to 723 K under loads of 95-108 MPa. For a comparative purpose, the creep behavior of the monolithic matrix alloy AZ91D was also conducted under loads of 15-55 MPa at 548-598 K. The creep mechanisms were theoretically analyzed based on the power-law relation. The results showed that the creep rates of both TiC/AZ91D composites and AZ91D alloy increase with increasing the temperature and load. The TiC/AZ91D composites possess superior creep resistance as compared with the AZ91D alloy. At deformation temperature below 573 K, the stress exponent n of AZ91D alloy approaches theoretical value of 5, which suggests that the creep process is controlled by dislocation climb. At 598 K, the stress exponent of AZ91D is close to 3, in which viscous non-basal slip deformation plays a key role in the process of creep deformation. However, the case differs from that of AZ91D alloy when the stress exponent n of TiC/AZ91D composites exceeds 9, which shows that there exists threshold stress in the creep process of the composites, similar to other types of composites. The average activation energies for the creep of the AZ91D alloy and TiC/AZ91D composites were calculated to be 144 and 152 kJ/mol, respectively. The existence of threshold stress in the creep process of the composites leads to an increase in activation energy for creep.
关键词:
Magnesium-matrix composites
,
composites
,
TiC/AZ91D
,
in
陈礼清
,
董群
,
于宝海
,
马宗义
功能材料
介绍一种新的低成本合成具有网络互穿结构TiC/AZ91D镁基复合材料的方法--原位反应渗透法.该方法中,TiC陶瓷增强相由元素粉末Ti和C间原位反应直接合成,无需添加第三相金属粉末,仅在原位反应发生的同时熔融基体镁合金由毛细管力作用渗入(Tip+Cp)预制块内部构成致密的具有网络互穿结构的TiC/AZ91D镁基复合材料.实验结果和理论计算表明:(1)通过精确控制(Tip+Cp)预制块的致密度,考虑原位反应发生前后形成的TiC本征体积变化,即可获得具有不同TiC陶瓷含量的网络互穿结构镁基复合材料;(2)原位合成的TiC陶瓷是一可变化学剂量比的化合物,其晶格常数随反应条件而变化,主要取决于反应条件和原始元素粉末的尺寸.
关键词:
镁基复合材料
,
TiC/AZ91D
,
原位反应渗透法
,
互穿网络结构