欢迎登录材料期刊网

材料期刊网

高级检索

  • 论文(7)
  • 图书()
  • 专利()
  • 新闻()

Manufacturing Titanium Metal Matrix Composites by Consolidating Matrix Coated Fibres

Hua-Xin PENG

材料科学技术(英文)

Titanium metal matrix composites (TiMMCs) reinforced by continuous silicon carbide fibres are being developed for aerospace applications. TiMMCs manufactured by the consolidation of matrix-coated fibre (MCF) method offer optimum properties because of the resulting uniform fibre distribution, minimum fibre damage and fibre volume fraction control. In this paper, the consolidation of Ti-6Al-4V matrix-coated SiC fibres during vacuum hot pressing has been investigated. Experiments were carried out on multi-ply MCFs under vacuum hot pressing (VHP). In contrast to most of existing studies, the fibre arrangement has been carefully controlled either in square or hexagonal arrays throughout the consolidated sample. This has enabled the dynamic consolidation behaviour of MCFs to be demonstrated by eliminating the fibre re-arrangement during the VHP process. The microstructural evolution of the matrix coating was reported and the deformation mechanisms involved were discussed.

关键词: Titanium matrix composites , null , null , null

Evaluation the Properties of Titanium Matrix Composites by Melting Route Synthesis

Bong-Jae Choi , Si-Young Sung , Myoung-Gyun Kim , Young-Jig Kim

材料科学技术(英文)

The main purpose of this study is an in-situ synthesis of (TiB+TiC) hybrid titanium matrix composites (TMCs) by vacuum induction melting method and to verify its mechanical properties. The melting route was adopted to synthesize the commercial pure titanium (cp Ti) and granular boron carbide (B4C). The reinforcements, the fraction of 10 vol. pct, were formed by adding 1.88 wt pct B4C to cp Ti. After in-situ synthesis of TMCs, electron probe micro-analysis elemental mapping was carried out to confirm the distribution and shape of reinforcements. The cone-on-disk type sliding wear test was also done for the identification of TMCs. It is concluded that (TiB+TiC) hybrid TMCs can be in-situ synthesized and has better wear properties than H13.

关键词: Titanium matrix composites , null , null , null

出版年份

刊物分类

相关作者

相关热词