崔桂梅
,
李静
,
张勇
,
卢俊慧
,
马祥
钢铁研究学报
针对高炉炉温铁水硅含量为预测对象的不确定性和高炉炉温单变量时间序列模型所含炉温输入信息量少、难以揭示各个变量之间的相互关系及变化规律的特点,以高炉铁水温度为研究对象,建立BP神经网络多元时间序列模型和T-S模糊神经网络多元时间序列模型.应用高炉实际数据做模型检验,结果表明,T-S模糊神经网络多元时间序列模型取得更好的命中率和预测精度.
关键词:
高炉铁水温度
,
多元时间序列
,
BP神经网络
,
模糊神经网络
崔桂梅
,
李静
,
张勇
,
李仲德
,
马祥
钢铁
针对高炉炉温与铁水硅含量呈正相关而非严格的线性关系和机制建模的主观性以及其难以建立各变量之间隐含的数学关系等的不足,在数据挖掘理论的基础上,对海量的样本数据进行预处理和特征提取,然后以高炉铁水温度为研究对象,建立了基于TS模糊神经网络的高炉铁水温度预测模型.最后,应用某高炉数据进行模型验证,并将该模型与T-S模糊多元回归模型以及BP神经网络模型进行比较研究,仿真结果表明T-S模糊神经网络模型的有效性和优越性.
关键词:
高炉铁水温度
,
T-S模糊回归
,
T-S模糊神经网络