{"currentpage":1,"firstResult":0,"maxresult":10,"pagecode":5,"pageindex":{"endPagecode":5,"startPagecode":1},"records":[{"abstractinfo":"分别对碳进行硝酸、空气氧化及惰性气氛下高温处理.采用BET法和红外光谱法测试了3种方法处理的碳的孔隙结构和表面化学性质.经空气氧化和惰性气氛下高温处理后碳材料的孔隙结构变化较大, 而经硝酸溶液处理碳材料孔隙结构变化较小;FTIR谱图研究表明, 硝酸处理和空气氧化后碳表面官能团较其处理前的多, 惰性气氛下高温处理可使部分官能团分解.研究了氯铂酸水溶液在各种碳上的等温吸附情况, 并利用Langmuir吸附模型模拟了等温吸附线.结果表明:经硝酸处理后的碳上的氯铂酸溶液吸附量显著增加, 在惰性气氛下热处理后的碳上其吸附量降低.","authors":[{"authorName":"李喜飞","id":"a966dcd7-15a4-46a2-8b9f-cb256a206385","originalAuthorName":"李喜飞"},{"authorName":"陈晓红","id":"2644734a-32a3-4a31-978b-0a044014de94","originalAuthorName":"陈晓红"},{"authorName":"卢世刚","id":"7fa173d4-1829-44c7-b085-4c1b58db09f3","originalAuthorName":"卢世刚"},{"authorName":"张向军","id":"18ab261a-4cbc-4ac5-8706-d5f3329041c7","originalAuthorName":"张向军"}],"doi":"10.3969/j.issn.0258-7076.2004.02.036","fpage":"438","id":"7440fbfb-cce6-4b97-a427-305047691e4a","issue":"2","journal":{"abbrevTitle":"XYJS","coverImgSrc":"journal/img/cover/XYJS.jpg","id":"67","issnPpub":"0258-7076","publisherId":"XYJS","title":"稀有金属"},"keywords":[{"id":"d39e0956-d514-4229-af0d-5cc4d835cfcb","keyword":"碳","originalKeyword":"碳"},{"id":"485e89ec-8857-4189-86ac-e4cde56bba30","keyword":"吸附","originalKeyword":"吸附"},{"id":"d1ec2c30-3694-43a3-abf8-a4718ec9fce1","keyword":"孔隙性能","originalKeyword":"孔隙性能"},{"id":"166cf53b-0792-41a7-9cbd-1b25462d7931","keyword":"表面化学性质","originalKeyword":"表面化学性质"},{"id":"517b1d75-7aab-4f9f-9d53-c40bccd5c0e1","keyword":"氯铂酸","originalKeyword":"氯铂酸"}],"language":"zh","publisherId":"xyjs200402036","title":"碳在氯铂酸水溶液中吸附行为的研究","volume":"28","year":"2004"},{"abstractinfo":"利用离心沉积技术在多孔管内壁上制备了不同粒度的镍和不锈钢多孔梯度层,研究不同粒度的粉末以及梯度层厚度对梯度层孔隙性能的影响.结果表明,梯度层透气系数与中流量孔在梯度层粒度为5 μm以下急剧减小,当梯度层粉末粒度为13.6μm、梯度层厚度小于20 μm时,梯度层厚度对其孔径分布与透气系数影响不大;当梯度层粉末粒度为2.7μm时,梯度层的最佳匹配厚度是50μm.","authors":[{"authorName":"杨保军","id":"3f1e9ec4-0a0f-477a-bf0d-adb5e31c48b1","originalAuthorName":"杨保军"},{"authorName":"奚正平","id":"3d4ba799-381a-46dd-bb39-8e705df0b6ce","originalAuthorName":"奚正平"},{"authorName":"汤慧萍","id":"5cc102c7-9d92-4f5d-9062-76a1c2ed7a26","originalAuthorName":"汤慧萍"},{"authorName":"汪强兵","id":"f173fc68-f174-4ff7-9b6f-98e8122fff66","originalAuthorName":"汪强兵"}],"doi":"","fpage":"578","id":"ab9135ee-5858-447c-9e91-31883deacce3","issue":"z3","journal":{"abbrevTitle":"XYJSCLYGC","coverImgSrc":"journal/img/cover/XYJSCLYGC.jpg","id":"69","issnPpub":"1002-185X","publisherId":"XYJSCLYGC","title":"稀有金属材料与工程"},"keywords":[{"id":"2e345cd6-367f-478a-816f-a7ec73b7dcc7","keyword":"离心沉积","originalKeyword":"离心沉积"},{"id":"e97811ee-4251-4853-9489-051ae7140a28","keyword":"梯度金属多孔材料","originalKeyword":"梯度金属多孔材料"},{"id":"fa908fc5-8555-4e73-b3e2-9dcb1df4e610","keyword":"孔隙性能","originalKeyword":"孔隙性能"}],"language":"zh","publisherId":"xyjsclygc2007z3139","title":"梯度金属多孔材料孔结构研究","volume":"36","year":"2007"},{"abstractinfo":"利用通用单胞法(GMC)计算了不同孔隙形状及孔隙率对多孔材料等效弹性参数的影响,计算中分别采用二维方形、圆形孔隙模型和三维立方体、球形孔隙模型模拟多孔材料.不同孔隙率下等效弹性参数的计算结果表明:不同孔隙形状下,多孔材料等效弹性参数随孔隙率增大的退化程度不同;通过对比二维简化模型与三维模型的差异,发现二维简化模型对多孔材料等效弹性参数的估算值偏低.进一步将GMC计算结果和已有文献实验结果进行比较,发现两者具有较高的吻合度.最后将GMC模型与有限元、经验模型进行对比,得出GMC模型的局限性.综合计算结果,GMC具有一定的计算精度,可应用于工程实际分析中.","authors":[{"authorName":"沈明","id":"e5ee7bef-ceb1-4421-978f-e03ff37a3cc8","originalAuthorName":"沈明"},{"authorName":"魏大盛","id":"0ae6c26d-7849-4778-bc47-2791fcf2f7bf","originalAuthorName":"魏大盛"}],"doi":"","fpage":"1277","id":"b6847fe1-1e6f-417b-9180-efc022e04d80","issue":"5","journal":{"abbrevTitle":"FHCLXB","coverImgSrc":"journal/img/cover/FHCLXB.jpg","id":"26","issnPpub":"1000-3851","publisherId":"FHCLXB","title":"复合材料学报"},"keywords":[{"id":"1fe29b89-95ae-404f-ad32-d23586f23389","keyword":"通用单胞法","originalKeyword":"通用单胞法"},{"id":"7b6c753f-affd-4cdf-9f41-0f2c1d50d319","keyword":"多孔材料","originalKeyword":"多孔材料"},{"id":"effff296-7fe4-4726-8c9f-c856f2211574","keyword":"孔隙形状","originalKeyword":"孔隙形状"},{"id":"be0cd523-89c9-4c61-b650-0a685fe9f274","keyword":"孔隙率","originalKeyword":"孔隙率"},{"id":"86d90b52-7c0c-41da-9afb-a67260e64d13","keyword":"弹性性能","originalKeyword":"弹性性能"}],"language":"zh","publisherId":"fhclxb201405023","title":"孔隙形状及孔隙率对多孔材料弹性性能的影响","volume":"31","year":"2014"},{"abstractinfo":"在同一单重条件下,通过控制厚度,得到不同孔隙度的Ni纤维毡.研究了Ni纤维毡孔隙度的变化对其透气性能和最大孔径的影响.结果表明:相对透气系数和最大孔径随孔隙度的减小而减小;相同压差下,流量随孔隙度的增大而增大;相同孔隙度下,相对透气系数随压差增大,先减小后增大,并且孔隙度越大这种趋势越明显.","authors":[{"authorName":"许佩敏","id":"179703b0-7aaa-4e8a-b5fe-c2a6a631e43d","originalAuthorName":"许佩敏"},{"authorName":"张健","id":"77d8c0ef-c514-47e2-9cbb-71c454d0e5e4","originalAuthorName":"张健"},{"authorName":"孙旭东","id":"fe73ad15-91e4-4ca9-9d75-f8e000d6a767","originalAuthorName":"孙旭东"},{"authorName":"李程","id":"3809cafd-5610-40c4-b4b1-fae7937ef7d3","originalAuthorName":"李程"},{"authorName":"奚正平","id":"e50b7c1c-2e8e-4f4f-aac1-9b31419ab22c","originalAuthorName":"奚正平"}],"doi":"","fpage":"447","id":"55d3baeb-29c5-4b59-9cdb-a2ffa891ee8c","issue":"z1","journal":{"abbrevTitle":"XYJSCLYGC","coverImgSrc":"journal/img/cover/XYJSCLYGC.jpg","id":"69","issnPpub":"1002-185X","publisherId":"XYJSCLYGC","title":"稀有金属材料与工程"},"keywords":[{"id":"796d26b6-d66b-477e-9309-b27574fb9633","keyword":"Ni纤维毡","originalKeyword":"Ni纤维毡"},{"id":"6fc2ebf4-de97-4b6e-b6d6-3ac58feb4cb6","keyword":"孔隙度","originalKeyword":"孔隙度"},{"id":"fdb12ebb-7719-4cea-b959-e918828536bd","keyword":"压缩变形","originalKeyword":"压缩变形"},{"id":"8e19ad8c-bb03-436f-94e6-b82a6444f788","keyword":"相对透气系数","originalKeyword":"相对透气系数"},{"id":"7e497c8e-241d-48f1-9a4a-66fdf0137c99","keyword":"最大孔径","originalKeyword":"最大孔径"}],"language":"zh","publisherId":"xyjsclygc2009z1101","title":"孔隙度对纤维毡透气性能和最大孔径的影响","volume":"38","year":"2009"},{"abstractinfo":"孔隙是热喷涂层的一种重要结构缺陷,热喷涂层孔隙率是表征涂层致密程度的重要指标,也是评价涂层质量优劣的重要标准。孔隙率的高低直接影响涂层的服役性能,将涂层孔隙率控制在一定范围内,对提高涂层使用寿命、增强涂层的防护性能具有重要意义。总结了热喷涂层孔隙的形成机理、热喷涂层孔隙形成的影响因素、涂层孔隙率的测试方法,阐述了热喷涂层孔隙对涂层隔热性能、力学性能、腐蚀性能的影响,并展望了该领域未来的重点研究方向。","authors":[{"authorName":"周羊羊","id":"03daab3c-d5b7-4242-a465-d5a56d6f5c7d","originalAuthorName":"周羊羊"},{"authorName":"马国政","id":"046b586e-b14c-4f9a-9eec-db83280ee04a","originalAuthorName":"马国政"},{"authorName":"王海斗","id":"89112e4e-5bac-413d-a3d4-8933b793a903","originalAuthorName":"王海斗"},{"authorName":"李国禄","id":"9fd32a69-7069-42cd-b135-e7aa4eef9841","originalAuthorName":"李国禄"},{"authorName":"陈书赢","id":"acce3e0d-9897-4419-a39f-ab5fc65a0e87","originalAuthorName":"陈书赢"},{"authorName":"王海军","id":"35e9f653-4827-467e-a62e-baa306d64500","originalAuthorName":"王海军"},{"authorName":"刘明","id":"03ce8e68-efee-43f2-9106-c010efa752c2","originalAuthorName":"刘明"}],"doi":"10.11896/j.issn.1005-023X.2016.017.013","fpage":"90","id":"9385c4c8-1387-44cc-ae67-3c41b07511fa","issue":"17","journal":{"abbrevTitle":"CLDB","coverImgSrc":"journal/img/cover/CLDB.jpg","id":"8","issnPpub":"1005-023X","publisherId":"CLDB","title":"材料导报"},"keywords":[{"id":"ac72928c-43d1-488d-839e-7c9e2551ea73","keyword":"孔隙率","originalKeyword":"孔隙率"},{"id":"098c085d-607d-4746-834b-ac174c2b6ca6","keyword":"形成机理","originalKeyword":"形成机理"},{"id":"8c582607-6e08-410e-80a5-81363b54e9c2","keyword":"隔热性能","originalKeyword":"隔热性能"},{"id":"87f80b4e-705e-4303-bf1f-777296ad690e","keyword":"力学性能","originalKeyword":"力学性能"},{"id":"2b9e05fb-eee8-4ea8-abe6-158c6e8499a8","keyword":"腐蚀性能","originalKeyword":"腐蚀性能"},{"id":"0ae77ca5-a960-443e-958b-9e9f3e41eb67","keyword":"热喷涂","originalKeyword":"热喷涂"}],"language":"zh","publisherId":"cldb201617013","title":"热喷涂层孔隙及对涂层性能影响的研究现状","volume":"30","year":"2016"},{"abstractinfo":"以玻璃纤维为成孔剂,采用孔隙预置技术制备了发汗多孔C/SiC复合材料.对孔隙结构进行了表征,并研究了材料的力学性能和渗透行为.研究结果表明,采用孔隙预置技术能够有效地实现多孔 C/SiC材料开孔率和孔隙结构控制,该材料具有良好的力学性能和渗透性能.","authors":[{"authorName":"吉洪亮","id":"3aeafe9e-07c3-4875-a700-927b14f943a1","originalAuthorName":"吉洪亮"},{"authorName":"张长瑞","id":"82360ff5-0b5c-448a-8073-df85394f05bc","originalAuthorName":"张长瑞"},{"authorName":"曹英斌","id":"7e6042dd-bb24-4a4f-919d-bcef95759bdd","originalAuthorName":"曹英斌"}],"doi":"10.3969/j.issn.1005-5053.2008.01.017","fpage":"82","id":"232169df-0fbe-47b0-bf74-4606f5dada2f","issue":"1","journal":{"abbrevTitle":"HKCLXB","coverImgSrc":"journal/img/cover/HKCLXB.jpg","id":"41","issnPpub":"1005-5053","publisherId":"HKCLXB","title":"航空材料学报"},"keywords":[{"id":"1f6d9a88-5fb0-4df0-b346-2f055aa79bff","keyword":"多孔C/SiC复合材料","originalKeyword":"多孔C/SiC复合材料"},{"id":"78f8cc4b-a899-4b43-b479-8575454e9bba","keyword":"孔隙预置","originalKeyword":"孔隙预置"}],"language":"zh","publisherId":"hkclxb200801017","title":"孔隙预置技术制备多孔 C/SiC复合材料及其性能表征","volume":"28","year":"2008"},{"abstractinfo":"利用超声衰减的强度随聚酰亚胺复合材料孔隙率增加而逐渐增加的性质,建立超声衰减的强度与孔隙率之间的关系,再将不同孔隙率与复合材料力学性能之间的关系对应起来.结果表明,可以通过超声衰减的強度直接预测复合材料的力学性能.","authors":[{"authorName":"刘志真","id":"08ff18ea-7fb9-46bc-81ce-37d76b1ba0c8","originalAuthorName":"刘志真"},{"authorName":"李宏运","id":"c8257ca5-e05e-4e9f-aaa5-97e49bdafb1b","originalAuthorName":"李宏运"},{"authorName":"益小苏","id":"301d81de-2da4-4eec-a057-86f1c731e4ac","originalAuthorName":"益小苏"}],"doi":"10.3969/j.issn.1001-4381.2005.09.015","fpage":"56","id":"22bfbbce-f14b-4640-ab9f-6778069a0c75","issue":"9","journal":{"abbrevTitle":"CLGC","coverImgSrc":"journal/img/cover/CLGC.jpg","id":"9","issnPpub":"1001-4381","publisherId":"CLGC","title":"材料工程"},"keywords":[{"id":"1ae16522-f6f2-47c8-97d5-b82e4b540ea9","keyword":"聚酰亚胺","originalKeyword":"聚酰亚胺"},{"id":"7bd46384-1cd4-4c90-b283-61914b97ad1a","keyword":"复合材料","originalKeyword":"复合材料"},{"id":"20f31568-8b7e-43d5-a9bc-857247dbbf7d","keyword":"孔隙率","originalKeyword":"孔隙率"},{"id":"cbfe3818-2c7b-4ac2-9c1a-c742daf748f7","keyword":"超声衰减的强度","originalKeyword":"超声衰减的强度"},{"id":"f14278fd-b555-4864-b8a9-4961ada817aa","keyword":"力学性能","originalKeyword":"力学性能"}],"language":"zh","publisherId":"clgc200509015","title":"孔隙率对聚酰亚胺复合材料力学性能的影响","volume":"","year":"2005"},{"abstractinfo":"减小叶片端部的二次流动能够显著减小叶栅的流动损失.本文通过分析叶栅二次流动的机理,提出了一种减小二次流损失的结构─叶片端部的孔隙结构.并通过试验验证了合理的孔隙结构能达到减小二次流损失的目的.本文分别研究了在透平叶片端部不同位置的孔隙结构对透平叶栅气动性能的影响.发现对于小尺寸的孔隙结构,其对流动控制的能力有限,尽管如此,其还是能够达到减小损失的目的.本文进行了五个攻角下的孔隙结构实验,结果表明:端部前缘孔隙结构与原始叶栅相比,不同攻角下的总压损失分别减小了2.4%、6.8%、6.8%、3.6%、2.7%.本文工作为提高透平叶栅气动性能提供了一种新思路.","authors":[{"authorName":"刘红","id":"b681db9a-fb6f-43d9-8f54-70fe2e4acae6","originalAuthorName":"刘红"},{"authorName":"姚君","id":"342b53e4-a246-44cc-ba3f-ffde378b4230","originalAuthorName":"姚君"},{"authorName":"徐大懋","id":"5e3cde92-26dd-422b-8484-e2be781028f5","originalAuthorName":"徐大懋"}],"doi":"","fpage":"763","id":"f6132080-d347-48af-b794-ec0c41ec04c9","issue":"5","journal":{"abbrevTitle":"GCRWLXB","coverImgSrc":"journal/img/cover/GCRWLXB.jpg","id":"32","issnPpub":"0253-231X","publisherId":"GCRWLXB","title":"工程热物理学报 "},"keywords":[{"id":"15aa5937-6cf1-43e9-a419-7133aaac41fb","keyword":"透平叶栅","originalKeyword":"透平叶栅"},{"id":"5b181dc3-7a38-4eef-8cd0-c8cce323c49d","keyword":"孔隙结构","originalKeyword":"孔隙结构"},{"id":"c38648c9-eeb1-47df-916a-ace824b2bce9","keyword":"总压损失","originalKeyword":"总压损失"}],"language":"zh","publisherId":"gcrwlxb200805010","title":"叶片端部孔隙结构对透平叶栅气动性能影响的试验研究","volume":"29","year":"2008"},{"abstractinfo":"结合模板浸渍和粉末冶金烧结法,制备出具有良好孔隙性能和力学性能的多孔Nb-Ti合金.采用X射线衍射分析仪(XRD)、力学试验机、体视显微镜(SM)以及扫描电子显微镜(SEM),研究Ti含量(0~15%,质量分数)对多孔Nb-Ti合金成分、力学性能孔隙结构及微观形貌的影响.结果表明:Nb-Ti合金烧结过程完全,孔隙三维连通程度高,孔隙率为68.50%.随Ti含量从0增加到15%,合金的力学性能发生明显变化,其中抗压强度从(27.6±0.872) MPa增加到(59.3±1.354) MPa后降为(33.7±1.045) MPa,弹性模量从(0.21±0.0136) GPa增加到(0.46±0.0191) GPa.合金孔隙结构均匀化和三维连通程度增加,孔隙结构从块状转变为蜂窝状,颗粒间烧结颈长大,结合变紧密,Ti颗粒对Nb-Ti合金烧结的促进作用明显增强.多孔Nb-10Ti合金的孔隙形貌与松质骨类似,力学性能与人体松质骨相匹配,适合于医学植入应用.","authors":[{"authorName":"刘超","id":"92c082b7-fcdb-4f68-aff2-4ab1902a998c","originalAuthorName":"刘超"},{"authorName":"杨海林","id":"1b489b76-40c0-4c6f-a6b8-4febe29d35a7","originalAuthorName":"杨海林"},{"authorName":"李婧","id":"cdcc58c4-083d-4b29-b23b-f51583801138","originalAuthorName":"李婧"},{"authorName":"阮建明","id":"f3073a29-97ab-4909-9ed5-b2820fd0db9d","originalAuthorName":"阮建明"}],"doi":"","fpage":"752","id":"f93e9748-b91b-4586-abb2-f7f7a454990c","issue":"3","journal":{"abbrevTitle":"ZGYSJSXB","coverImgSrc":"journal/img/cover/ZGYSJSXB.jpg","id":"88","issnPpub":"1004-0609","publisherId":"ZGYSJSXB","title":"中国有色金属学报"},"keywords":[{"id":"5026765d-ee39-4051-9aaa-51abbb4b3c8a","keyword":"Nb-Ti合金","originalKeyword":"Nb-Ti合金"},{"id":"ab59696c-6eb4-47d0-a8ef-27c4f1c1a358","keyword":"多孔金属","originalKeyword":"多孔金属"},{"id":"7267961c-621c-48aa-ab7f-517cb06761d5","keyword":"力学性能","originalKeyword":"力学性能"},{"id":"ee6208c9-d963-4d36-83fe-c543c95d39de","keyword":"孔隙率","originalKeyword":"孔隙率"},{"id":"5b67efd6-1b6b-4ef0-8e3e-e6c11878517b","keyword":"微观结构","originalKeyword":"微观结构"}],"language":"zh","publisherId":"zgysjsxb201403023","title":"生物医用多孔Nb-Ti合金的孔隙率和力学性能","volume":"24","year":"2014"},{"abstractinfo":"包含羟基磷灰石(HA)和磷酸三钙(TCP)的双相磷酸钙陶瓷(BCP)由于其具有良好的降解性能和良好的骨诱导性被看作是骨替代和修复的首选材料.BCP陶瓷的降解性能主要受相成份、孔隙率、材料微观形貌的影响.通过化学共沉淀法制得了成份为60/40(HA/TCP)的双相BCP粉体,通过双氧水发泡法制得了孔隙率分别为40%、60%和80%的多孔双相BCP陶瓷.选用Tris缓冲液浸泡的方法测试材料的体外降解行为.结果显示,孔隙率的改变有效地调控了BCP陶瓷的降解性能.随孔隙率的增加材料的溶出显著加快.高孔隙率材料的快速降解,在体系中释放出相对较高的钙、磷浓度,这可能是其高生物活性的重要影响因素.","authors":[{"authorName":"王宏","id":"dd323466-1cec-4a69-93f9-029a02083582","originalAuthorName":"王宏"},{"authorName":"丁洁涛","id":"763e9e66-eef2-4ba5-9a82-cd265196cbec","originalAuthorName":"丁洁涛"},{"authorName":"朱向东","id":"bb8fae29-a777-4d84-92ba-aa6d2b520a8f","originalAuthorName":"朱向东"},{"authorName":"范红松","id":"c08fddca-38d1-4cee-99a6-35bb84128e8e","originalAuthorName":"范红松"},{"authorName":"张兴栋","id":"c485904a-3c1b-473c-a4ba-eb701b1a2327","originalAuthorName":"张兴栋"}],"doi":"","fpage":"1727","id":"76332c11-ec34-45e1-a07d-f9a174f4e5b2","issue":"10","journal":{"abbrevTitle":"GNCL","coverImgSrc":"journal/img/cover/GNCL.jpg","id":"33","issnPpub":"1001-9731","publisherId":"GNCL","title":"功能材料"},"keywords":[{"id":"09ff1dc0-42a9-443f-b600-f013706ad2af","keyword":"磷酸钙","originalKeyword":"磷酸钙"},{"id":"f643492f-c161-4057-80b8-2bf548785938","keyword":"降解","originalKeyword":"降解"},{"id":"492cef68-6852-42cc-b3d4-8b056845272e","keyword":"孔隙率","originalKeyword":"孔隙率"},{"id":"4138a9f0-cfc6-462a-8845-07c377b3c980","keyword":"生物活性","originalKeyword":"生物活性"}],"language":"zh","publisherId":"gncl201010016","title":"不同孔隙率的双相磷酸钙陶瓷降解性能研究","volume":"41","year":"2010"}],"totalpage":8820,"totalrecord":88199}