欢迎登录材料期刊网
汤勃 , 孔建益 , 王兴东 , 侯宇
钢铁研究学报
针对带钢表面的划痕、黑斑、翘皮、辊印、褶皱和压印6种典型缺陷,提取了样本图像的灰度、纹理和几何形状特征等32维特征向量。基于遗传算法对32维特征向量进行降维优化选择,选择了其中的20维以进行缺陷图像类型的分类。利用BP神经网络对降维前后的6种典型带钢表面缺陷分类进行对比识别,并同主成分降维方法进行了对比,验证了所提取的带钢表面缺陷图像特征及其遗传算法降维的有效性。
关键词: 带钢表面缺陷 , 特征提取 , 降维 , 识别与分类